Compounds that block the function of connexin and pannexin protein channels have been suggested to be valuable therapeutics for a range of diseases. Some of these compounds are now in clinical trials, but for many of them, the literature is inconclusive about the molecular effect on the tissue, despite evidence of functional recovery. Blocking the different channel types has distinct physiological and pathological implications and this review describes current knowledge of connexin and pannexin protein channels, their function as channels and possible mechanisms of the channel block effect for the latest therapeutic compounds.
View Article and Find Full Text PDFHypoxic injury results in cell death, tissue damage and activation of inflammatory pathways. This is mediated by pathological Connexin43 (Cx43) hemichannel (HC) opening resulting in osmotic and ionic imbalances as well as cytokine production perpetuating the inflammatory environment. Gap19 is an intracellularly acting Cx43 mimetic peptide that blocks HC opening and thus promotes cell survival.
View Article and Find Full Text PDFThe current study investigated the use of two cationic peptides, Xentry-KALA (XK) and Xentry-Protamine (XP), for intracellular delivery of Connexin43 antisense oligonucleotides (Cx43AsODN). The charge and size of Cx43AsODN:XK and Cx43AsODN:XP complexes was determined by Zetasizer analysis. The earliest positive zeta potential reading was obtained at a 1:2 and 1:1.
View Article and Find Full Text PDFApoptosis leads to the fragmentation and packaging of cellular contents into discrete vesicles, a process known as 'blebbing'. Extracellular vesicles express membrane-bound sialic acids, which enable their capture by CD169 (sialoadhesin; Siglec-1) expressing macrophages in the lymph node and spleen. Furthermore, CD169 mediates vesicle trafficking and suppresses the immune response to exosomes-a type of extracellular vesicle released from living cells.
View Article and Find Full Text PDF