Publications by authors named "Frazer L"

Purpose: Porcine cervical spines are commonly used as a surrogate for human lumbar spines due to their similar anatomic and mechanical characteristics. Despite their use in spinal biomechanics research, porcine annulus fibrosus (AF) yield and ultimate properties have not been fully evaluated. This study sought to provide a novel dataset of elastic, yield, and ultimate properties of the porcine AF loaded in the circumferential direction.

View Article and Find Full Text PDF

Purpose: Understanding how spinal orientation affects injury outcome is essential to understand lumbar injury biomechanics associated with high-rate vertical loading.

Methods: Whole-column human lumbar spines (T12-L5) were dynamically loaded using a drop tower to simulate peak axial forces associated with high-speed aircraft ejections and helicopter crashes. Spines were allowed to maintain natural lordotic curvature for loading, resulting in a range of orientations.

View Article and Find Full Text PDF

In dynamic impact events, thoracic injuries often involve rib fractures, which are closely related to injury severity. Previous studies have investigated the behavior of isolated ribs under impact loading conditions, but often neglected the variability in anatomical shape and tissue material properties. In this study, we used probabilistic finite element analysis and statistical shape modeling to investigate the effect of population-wide variability in rib cortical bone tissue mechanical properties and rib shape on the biomechanical response of the rib to impact loading.

View Article and Find Full Text PDF

Evaluating Behind Armor Blunt Trauma (BABT) is a critical step in preventing non-penetrating injuries in military personnel, which can result from the transfer of kinetic energy from projectiles impacting body armor. While the current NIJ Standard-0101.06 standard focuses on preventing excessive armor backface deformation, this standard does not account for the variability in impact location, thorax organ and tissue material properties, and injury thresholds in order to assess potential injury.

View Article and Find Full Text PDF

Military personnel are commonly at risk of lower back pain and thoracolumbar spine injury. Human volunteers and postmortem human subjects have been used to understand the scenarios where injury can occur and the tolerance of the warfighter to these loading regimes. Finite element human body models (HBMs) can accurately simulate the mechanics of the human body and are a useful tool for understanding injury.

View Article and Find Full Text PDF

Osteoporotic fractures, prevalent in the elderly, pose a significant health and economic burden. Current methods for predicting fracture risk, primarily relying on bone mineral density, provide only modest accuracy. If better spatial resolution of trabecular bone in a clinical scan were available, a more complete assessment of fracture risk would be obtained using microarchitectural measures of bone (i.

View Article and Find Full Text PDF

Epigenetic modifications, such as DNA methylation, are enzymatically regulated processes that directly impact gene expression patterns. In early life, they are central to developmental programming and have also been implicated in regulating inflammatory responses. Research into the role of epigenetics in neonatal health is limited, but there is a growing body of literature related to the role of DNA methylation patterns and diseases of prematurity, such as the intestinal disease necrotizing enterocolitis (NEC).

View Article and Find Full Text PDF

Objective: Neonatal Opioid Withdrawal Syndrome (NOWS) has been associated with the development of necrotizing enterocolitis (NEC) in term and late-preterm neonates. In this study, we used stool gene expression to determine if an increase in baseline inflammation in the intestine of infants with NOWS is associated with these findings.

Study Design: Stool samples were prospectively collected between days 1-3 and days 4-9 after delivery for opioid-exposed ( n = 9) or non-exposed neonates (n = 8).

View Article and Find Full Text PDF

Non-combat musculoskeletal injuries (MSKIs) during military training significantly impede the US military's functionality, with an annual cost exceeding $3.7 billion. This study aimed to investigate the effectiveness of a markerless motion capture system and full-body biomechanical movement pattern assessments to predict MSKI risk among military trainees.

View Article and Find Full Text PDF

The winning game outcome in basketball is partially contingent on the team's ability to secure and make more free-throw shooting attempts, especially close to the end of the game. Thus, the purpose of the present study was to perform a comprehensive biomechanical analysis of the free-throw shooting motion to examine differences between (a) proficient (≥70%) and non-proficient shooters (<70%) and (b) made and missed free-throw shoots within the proficient group of shooters. Thirty-four recreationally active males with previous basketball playing experience attempted ten consecutive free-throw shots (4.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a severe and potentially fatal intestinal disease that has been difficult to study due to its complex pathogenesis, which remains incompletely understood. The pathophysiology of NEC includes disruption of intestinal tight junctions, increased gut barrier permeability, epithelial cell death, microbial dysbiosis, and dysregulated inflammation. Traditional tools to study NEC include animal models, cell lines, and human or mouse intestinal organoids.

View Article and Find Full Text PDF

Fast-running surrogate computational models (simpler computational models) have been successfully used to replace time-intensive finite element models. However, it is unclear how well they perform in accurately and efficiently replicating complex, full human body finite element models. Here we survey several surrogate modeling techniques and assess their accuracy in predicting full strain fields of tissues of interest during a highly dynamic behind armor blunt trauma impact to the liver.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is an intestinal disease that primarily impacts preterm infants. The pathophysiology of NEC involves a complex interplay of factors that result in a deleterious immune response, injury to the intestinal mucosa, and in its most severe form, irreversible intestinal necrosis. Treatments for NEC remain limited, but one of the most effective preventative strategies for NEC is the provision of breast milk feeds.

View Article and Find Full Text PDF

Introduction: Necrotizing enterocolitis (NEC) is a potentially fatal intestinal disease primarily affecting preterm infants. Early diagnosis of neonates with NEC is crucial to improving outcomes; however, traditional diagnostic tools remain inadequate. Biomarkers represent an opportunity to improve the speed and accuracy of diagnosis, but they are not routinely used in clinical practice.

View Article and Find Full Text PDF

Maternal breast milk is the penultimate nutritional source for term and preterm neonates. Its composition is highly complex and includes multiple factors that enhance the development of nearly every neonatal organ system leading to both short- and long-term health benefits. Intensive research is focused on identifying breast milk components that enhance infant health.

View Article and Find Full Text PDF

Three-dimensional force plates are important tools for biomechanics discovery and sports performance practice. However, currently, available 3D force plates lack portability and are often cost-prohibitive. To address this, a recently discovered 3D force sensor technology was used in the fabrication of a prototype force plate.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device.

View Article and Find Full Text PDF

Rapid development of the fetal and neonatal intestine is required to meet the growth requirements of early life and form a protective barrier against external insults encountered by the intestinal mucosa. The fetus receives nutrition via the placenta and is protected from harmful pathogens in utero, which leads to intestinal development in a relatively quiescent environment. Upon delivery, the intestinal mucosa is suddenly tasked with providing host defense and meeting nutritional demands.

View Article and Find Full Text PDF

Body armor is used to protect the human from penetrating injuries, however, in the process of defeating a projectile, the back face of the armor can deform into the wearer at extremely high rates. This deformation can cause a variety of soft and hard tissue injuries. Finite element modeling (FEM) represents one of the best tools to predict injuries from this high-rate compression mechanism.

View Article and Find Full Text PDF

The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily measured quantum process whose transition statistics cannot be explained by Fermi's golden rule. Commonly, the transition statistics are power-law distributed, implying that quantum dots possess at least trivial memories. By investigating the temporal correlations in the blinking data, we demonstrate with high statistical confidence that there is nontrivial memory between the on and off brightness duration data of blinking quantum dots.

View Article and Find Full Text PDF

Quasiperiodicity is a form of spatial order that has been observed in quasicrystalline matter but not light. We construct a quasicrystalline surface out of a light emitting diode. Using a nanoscale waveguide as a microscope (NSOM), we directly image the light field at the surface of the diode.

View Article and Find Full Text PDF

Background: Short-chain fatty acids (SCFAs), microbial metabolites, have been minimally studied in neonatal pathophysiology but have been associated with disease outcomes in adults. The objective of this manuscript was to determine if SCFA levels in maternal breastmilk (BM) and stool from preterm neonates impacted the risk of neonatal morbidities. Methods: SCFA levels were quantified by liquid chromatography with tandem mass spectrometry on maternal BM and neonatal stool for preterm infants < 28 weeks’ gestation (N = 72) on postnatal days 14 and 28.

View Article and Find Full Text PDF

Introduction: The neonatal sequential organ failure assessment (nSOFA) score is a tool for calculating mortality risk of infants in the neonatal intensive care unit. The utility of the nSOFA in determining the risk of mortality or the association with surgical intervention among infants with necrotizing enterocolitis (NEC) has not been investigated.

Methods: We performed a retrospective, cohort study of preterm (<37 weeks) infants with NEC Bell's stage ≥ IIA at six hospitals from 2008 to 2020.

View Article and Find Full Text PDF