Publications by authors named "Frayssinet E"

In this paper, we present the preparation of few-layer MoS films on single-crystal sapphire, as well as on heteroepitaxial GaN templates on sapphire substrates, using the pulsed laser deposition (PLD) technique. Detailed structural and chemical characterization of the films were performed using Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction measurements, and high-resolution transmission electron microscopy. According to X-ray diffraction studies, the films exhibit epitaxial growth, indicating a good in-plane alignment.

View Article and Find Full Text PDF

Parameterized cellular microstructures allow for the development of efficient multiscale optimization strategies for the design of Functionally Graded Scaffolds (FGSs). This work assesses the biomimetic capabilities of the Voronoi-based cancelous bone microstructure introduced by Fantini et al. (2016) in terms of histomorphometric and elastic properties.

View Article and Find Full Text PDF

Optically pumped whispering-gallery mode (WGM) lasing is observed from a thin-film GaN microdisk processed from GaN-on-Si InGaN/GaN multi-quantum well wafers by selective wet-etch removal of the substrate. Compared with thin-film microdisks processed from GaN-on-sapphire wafers through laser lift-off of the sapphire substrate, the exposed surface is significantly smoother as laser-induced damage is avoided, with a root-mean-square roughness of 1.3 nm compared with 5.

View Article and Find Full Text PDF

Microdisks fabricated with III-nitride materials grown on GaN substrates are demonstrated, taking advantage of the high material quality of homoepitaxial films and advanced micro-fabrication processes. The epitaxial structure consists of InGaN/GaN multi-quantum wells (MQWs) sandwiched between AlGaN/GaN and InAlN/GaN superlattices as cladding layers for optical confinement. Due to lattice-matched growth with low dislocations, an internal quantum efficiency of ∼40% is attained, while the sidewalls of the etched 8 µm-diameter microdisks patterned by microsphere lithography are optically smooth to promote the formation of whispering-gallery modes (WGMs) within the circular optical cavities.

View Article and Find Full Text PDF

It is shown that substrate pixelisation before epitaxial growth can significantly impact the emission color of semiconductor heterostructures. The wavelength emission from InGaN/GaN quantum wells can be shifted from blue to yellow simply by reducing the mesa size from 90 × 90 µm to 10 × 10 µm of the patterned silicon used as the substrate. This color shift is mainly attributed to an increase of the quantum well thickness when the mesa size decreases.

View Article and Find Full Text PDF

AlN nucleation layers are the basement of GaN-on-Si structures grown for light-emitting diodes, high frequency telecommunication and power switching systems. In this context, our work aims to understand the origin of propagation losses in GaN-on-Si High Electron Mobility Transistors at microwaves frequencies, which are critical for efficient devices and circuits. AlN/Si structures are grown by Metalorganic Vapor Phase Epitaxy.

View Article and Find Full Text PDF

Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride-on-silicon platform with gallium nitride (GaN) as the main waveguide layer. The photonic circuits consist of a microdisk and a pulley waveguide, terminated by out-coupling gratings. In this Letter, we measure quality factors up to 3500 under continuous-wave excitation.

View Article and Find Full Text PDF

On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties.

View Article and Find Full Text PDF

Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk.

View Article and Find Full Text PDF