The contribution of rare noncoding genetic variation to common phenotypes is largely unknown, as a result of a historical lack of population-scale whole-genome sequencing data and the difficulty of categorizing noncoding variants into functionally similar groups. To begin addressing these challenges, we performed a cis association analysis using whole-genome sequencing data, consisting of 1.1 billion variants, 123 million noncoding aggregate-based tests and 2,907 circulating protein levels in ~50,000 UK Biobank participants.
View Article and Find Full Text PDFBackground: Multimorbidity, the presence of two or more conditions in one person, is common but studies are often limited to observational data and single datasets. We address this gap by integrating large-scale primary-care and genetic data from multiple studies to interrogate multimorbidity patterns and producing digital resources to support future research.
Methods: We defined chronic, common, and heritable conditions in individuals aged ≥65 years, using two large primary-care databases [CPRD (UK) N = 2,425,014 and SIDIAP (Spain) N = 1,053,640], and estimated heritability using the same definitions in UK Biobank (N = 451,197).
Obesity and cardiometabolic disease often, but not always, coincide. Distinguishing subpopulations within which cardiometabolic risk diverges from the risk expected for a given body mass index (BMI) may facilitate precision prevention of cardiometabolic diseases. Accordingly, we performed unsupervised clustering in four European population-based cohorts (N ≈ 173,000).
View Article and Find Full Text PDFMendelian randomization (MR) is an epidemiological approach that utilizes genetic variants as instrumental variables to estimate the causal effect of an exposure on a health outcome. This paper investigates an MR scenario in which genetic variants aggregate into clusters that identify heterogeneous causal effects. Such variant clusters are likely to emerge if they affect the exposure and outcome via distinct biological pathways.
View Article and Find Full Text PDFSelf-reported shorter/longer sleep duration, insomnia, and evening preference are associated with hyperglycaemia in observational analyses, with similar observations in small studies using accelerometer-derived sleep traits. Mendelian randomization (MR) studies support an effect of self-reported insomnia, but not others, on glycated haemoglobin (HbA1c). To explore potential effects, we used MR methods to assess effects of accelerometer-derived sleep traits (duration, mid-point least active 5-h, mid-point most active 10-h, sleep fragmentation, and efficiency) on HbA1c/glucose in European adults from the UK Biobank (UKB) (n = 73,797) and the MAGIC consortium (n = 146,806).
View Article and Find Full Text PDFBackground: Diabetes (regardless of type) and obesity are associated with a range of musculoskeletal disorders. The causal mechanisms driving these associations are unknown for many upper limb pathologies. We used genetic techniques to test the causal link between glycemia, obesity and musculoskeletal conditions.
View Article and Find Full Text PDFDiseases diagnosed in adulthood may have antecedents throughout (including prenatal) life. Gaining a better understanding of how exposures at different stages in the lifecourse influence health outcomes is key to elucidating the potential benefits of disease prevention strategies. Mendelian randomisation (MR) is increasingly used to estimate causal effects of exposures across the lifecourse on later life outcomes.
View Article and Find Full Text PDFBackground: Vasomotor symptoms (VMS) can often significantly impact women's quality of life at menopause. In vivo studies have shown that increased neurokinin B (NKB) / neurokinin 3 receptor (NK3R) signalling contributes to VMS, with previous genetic studies implicating the TACR3 gene locus that encodes NK3R. Large-scale genomic analyses offer the possibility of biological insights but few such studies have collected data on VMS, while proxy phenotypes such as hormone replacement therapy (HRT) use are likely to be affected by changes in clinical practice.
View Article and Find Full Text PDFThe extent to which genetic variations contribute to interindividual differences in weight loss and metabolic outcomes after bariatric surgery is unknown. Identifying genetic variants that impact surgery outcomes may contribute to clinical decision making. This review evaluates current evidence addressing the association of genetic variants with weight loss and changes in metabolic parameters after bariatric surgery.
View Article and Find Full Text PDFBackground: The mechanisms underlying genetic predisposition to higher body mass index (BMI) remain unclear.
Methods: We hypothesized that the relationship between BMI-genetic risk score (BMI-GRS) and BMI was mediated via disinhibition, emotional eating and hunger, and moderated by flexible (but not rigid) restraint within two UK cohorts: the Genetics of Appetite Study (GATE) (n = 2101, 2010-16) and the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 1679, 2014-18). Eating behaviour was measured by the Adult Eating Behaviour Questionnaire and Three-Factor Eating Questionaire-51.
Aims/hypothesis: Determining how high BMI at different time points influences the risk of developing type 2 diabetes and affects insulin secretion and insulin sensitivity is critical.
Methods: By estimating childhood BMI in 441,761 individuals in the UK Biobank, we identified which genetic variants had larger effects on adulthood BMI than on childhood BMI, and vice versa. All genome-wide significant genetic variants were then used to separate the independent genetic effects of high childhood BMI from those of high adulthood BMI on the risk of type 2 diabetes and insulin-related phenotypes using Mendelian randomisation.
Musculoskeletal conditions, including fractures, can have severe and long-lasting consequences. Higher body mass index in adulthood is widely acknowledged to be protective for most fracture sites. However, sources of bias induced by confounding factors may have distorted previous findings.
View Article and Find Full Text PDFType 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases.
View Article and Find Full Text PDFInsulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait.
View Article and Find Full Text PDF