Publications by authors named "Frauke May"

Cerebral venous (sinus) thrombosis (CVT) is an unusual manifestation of venous thrombosis causing severe neurological impairment and seizures. Molecular mechanisms underlying CVT, potentially involving pathological platelet activation, are unknown. Here we show that antibody-(INU1-fab)-induced cooperative signaling of two platelet receptors, C-type lectin-like receptor-2 (CLEC-2) and GPIIb/IIIa, triggers within minutes a CVT-like thrombotic syndrome in mice, characterized by tonic-myoclonic seizures, platelet consumption and death.

View Article and Find Full Text PDF

Factor XII (FXII) is a serine protease involved in multiple cascades, including the kallikrein-kinin system. It may play a role in diseases in which the downstream cascades are dysregulated, such as hereditary angioedema. Garadacimab (CSL312) is a first-in-class, fully human, monoclonal antibody targeting activated FXII (FXIIa).

View Article and Find Full Text PDF

Background: Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development.

View Article and Find Full Text PDF

Background: Hemophilia B is caused by coagulation factor IX (FIX) deficiency. Recombinant fusion protein linking coagulation FIX with recombinant albumin (rIX-FP; Idelvion ) is used for replacement therapy with an extended half-life. A previous quantitative whole-body autoradiography (QWBA) study investigating the biodistribution of rIX-FP indicated equal biodistribution, but more prolonged tissue retention compared with a marketed recombinant FIX product.

View Article and Find Full Text PDF

Haemostasis including blood coagulation is initiated upon vessel wall injury and indispensable to limit excessive blood loss. However, unregulated pathological coagulation may lead to vessel occlusion, causing thrombotic disorders, most notably myocardial infarction and stroke. Furthermore, blood exposure to foreign surfaces activates the intrinsic pathway of coagulation.

View Article and Find Full Text PDF

Background And Purpose: Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach.

View Article and Find Full Text PDF

Coated platelets, formed by collagen and thrombin activation, have been characterized in different ways: i) by the formation of a protein coat of α-granular proteins; ii) by exposure of procoagulant phosphatidylserine; or iii) by high fibrinogen binding. Yet, their functional role has remained unclear. Here we used a novel transglutaminase probe, Rhod-A14, to identify a subpopulation of platelets with a cross-linked protein coat, and compared this with other platelet subpopulations using a panel of functional assays.

View Article and Find Full Text PDF

Human plasma-derived C1-esterase inhibitor (C1-INH) is an efficacious and safe treatment for hereditary angioedema. However, thrombotic events in subjects treated with C1-INH at recommended or off-label, high doses have been reported. In this study, we addressed the potential prothrombotic risk of C1-INH treatment in high doses using a non-clinical rabbit model.

View Article and Find Full Text PDF

Objective: Atherothrombosis is the main cause of myocardial infarction and ischemic stroke. Although the extrinsic (tissue factor-factor VIIa [FVIIa]) pathway is considered as a major trigger of coagulation in atherothrombosis, the role of the intrinsic coagulation pathway via coagulation FXII herein is unknown. Here, we studied the roles of the extrinsic and intrinsic coagulation pathways in thrombus formation on atherosclerotic plaques both in vivo and ex vivo.

View Article and Find Full Text PDF

Circulating lymphocytes continuously enter lymph nodes for immune surveillance through specialized blood vessels named high endothelial venules, a process that increases markedly during immune responses. How high endothelial venules (HEVs) permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1α) in maintaining HEV barrier function.

View Article and Find Full Text PDF

Objective: Platelet inhibition is a major strategy to prevent acute ischemic cardiovascular and cerebrovascular events, which may, however, be associated with an increased bleeding risk. The (hem)immunoreceptor tyrosine activation motif-bearing platelet receptors, glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2), might be promising antithrombotic targets because they can be depleted from circulating platelets by antibody treatment, leading to sustained antithrombotic protection, but only moderately increased bleeding times in mice.

Approach And Results: We investigated whether both (hem)immunoreceptor tyrosine activation motif-bearing receptors can be targeted simultaneously and what the in vivo consequences of such a combined therapeutic GPVI/CLEC-2 deficiency are.

View Article and Find Full Text PDF

Vascular injury initiates rapid platelet activation that is critical for hemostasis, but it also may cause thrombotic diseases, such as myocardial infarction or ischemic stroke. Reorganizations of the platelet cytoskeleton are crucial for platelet shape change and secretion and are thought to involve activation of the small GTPase RhoA. In this study, we analyzed the in vitro and in vivo consequences of megakaryocyte- and platelet-specific RhoA gene deletion in mice.

View Article and Find Full Text PDF

Damage to the integrity of the vessel wall leads to exposure of the subendothelial extracellular matrix (ECM), triggering platelet activation and aggregation. This process is essential for primary hemostasis but it may also lead to arterial thrombosis. Although the mechanisms underlying platelet activation on the ECM are well explored, it is less clear which receptors mediate cellular activation in a growing thrombus.

View Article and Find Full Text PDF

Platelet activation at sites of vascular injury is triggered through different signaling pathways leading to activation of phospholipase (PL) Cbeta or PLCgamma2. Active PLCs trigger Ca(2+) mobilization and entry, which is a prerequisite for adhesion, secretion, and thrombus formation. PLCbeta isoenzymes are activated downstream of G protein-coupled receptors (GPCRs), whereas PLCgamma2 is activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors, such as the major platelet collagen receptor glycoprotein (GP) VI or CLEC-2.

View Article and Find Full Text PDF