Publications by authors named "Fratti R"

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.

View Article and Find Full Text PDF

Advancements in neural network approaches have enhanced the effectiveness of surface Electromyography (sEMG)-based hand gesture recognition when measuring muscle activity. However, current deep learning architectures struggle to achieve good generalization and robustness, often demanding significant computational resources. The goal of this paper was to develop a robust model that can quickly adapt to new users using Transfer Learning.

View Article and Find Full Text PDF
Article Synopsis
  • SNARE-mediated membrane fusion is influenced by the lipid composition of bilayers, affecting how proteins interact with lipids and the membranes' physical properties, like curvature.
  • Research on yeast vacuole fusion revealed that certain lysophospholipids, specifically lysophosphatidylcholine (LPC), can inhibit fusion based on their acyl chain length and saturation.
  • The study also showed that head group size is crucial in blocking fusion, with different lysolipids having varying effects on calcium transport and vacuole acidification.
View Article and Find Full Text PDF

Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids.

View Article and Find Full Text PDF

Yeast vacuoles are acidified by the v-type H-ATPase (V-ATPase) that is comprised of the membrane embedded V complex and the soluble cytoplasmic V complex. The assembly of the V-V holoenzyme on the vacuole is stabilized in part through interactions between the V a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P). PI(3,5)P also affects vacuolar Ca release through the channel Yvc1 and uptake through the Ca pump Pmc1.

View Article and Find Full Text PDF

Eukaryotic cells are compartmentalized into membrane-bound organelles, allowing each organelle to maintain the specialized conditions needed for their specific functions. One of the features that change between organelles is lumenal pH. In the endocytic and secretory pathways, lumenal pH is controlled by isoforms and concentration of the vacuolar-type H-ATPase (V-ATPase).

View Article and Find Full Text PDF

The ability to determine the binding affinity of lipids to proteins is an essential part of understanding protein-lipid interactions in membrane trafficking, signal transduction and cytoskeletal remodeling. Classic tools for measuring such interactions include surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). While powerful tools, these approaches have setbacks.

View Article and Find Full Text PDF

ApoB lipoproteins (apo B-Lp) are produced in hepatocytes, and their secretion requires the cargo receptor sortilin. We examined the secretion of apo B-Lp-containing very low-density lipoprotein (VLDL), an LDL progenitor. Sortilin also regulates the trafficking of the subtilase PCSK9, which when secreted binds the LDL receptor (LDLR), resulting in its endocytosis and destruction at the lysosome.

View Article and Find Full Text PDF

The lysosome-like vacuole is a useful model for studying membrane fusion events and organelle maturation processes utilized by all eukaryotes. The vacuolar membrane is capable of forming micrometer and nanometer scale domains that can be visualized using microscopic techniques and segregate into regions with surprisingly distinct lipid and protein compositions. These lipid raft domains are liquid-ordered (L ) like regions that are rich in sphingolipids, phospholipids with saturated acyl chains, and ergosterol.

View Article and Find Full Text PDF

The transport of Ca across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol-3-phosphate (PI3P) by the PI3P-5-kinase Fab1 to produce transient PI(3,5)P pools.

View Article and Find Full Text PDF

The homeostasis of most organelles requires membrane fusion mediated by oluble -ethylmaleimide-sensitive factor (NSF) ttachment protein ceptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive -SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, -ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17.

View Article and Find Full Text PDF

The metabolic consequences and sequelae of obesity promote life-threatening morbidities. PKCδI is an important elicitor of inflammation and apoptosis in adipocytes. Here we report increased PKCδI activation via release of its catalytic domain concurrent with increased expression of proinflammatory cytokines in adipocytes from obese individuals.

View Article and Find Full Text PDF

The accumulation of copper in organisms can lead to altered functions of various pathways and become cytotoxic through the generation of reactive oxygen species. In yeast, cytotoxic metals such as Hg , Cd and Cu are transported into the lumen of the vacuole through various pumps. Copper ions are initially transported into the cell by the copper transporter Ctr1 at the plasma membrane and sequestered by chaperones and other factors to prevent cellular damage by free cations.

View Article and Find Full Text PDF

Eukaryotic cell homeostasis requires transfer of cellular components among organelles and relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are reactivated by hexameric -ethylmaleimide-sensitive factor, vesicle-fusing ATPase (Sec18/NSF)-driven disassembly that enables a new round of membrane fusion. We previously found that phosphatidic acid (PA) binds Sec18 and thereby sequesters it from SNAREs and that PA dephosphorylation dissociates Sec18 from the membrane, allowing it to engage SNARE complexes.

View Article and Find Full Text PDF

In eukaryotes, organelles and vesicles modulate their contents and identities through highly regulated membrane fusion events. Membrane trafficking and fusion are carried out through a series of stages that lead to the formation of SNARE complexes between cellular compartment membranes to trigger fusion. Although the protein catalysts of membrane fusion are well characterized, their response to their surrounding microenvironment, provided by the lipid composition of the membrane, remains to be fully understood.

View Article and Find Full Text PDF

Phosphoinositides (PIs) regulate a myriad of cellular functions including membrane fusion, as exemplified by the yeast vacuole, which uses various PIs at different stages of fusion. In light of this, the effect of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P) on vacuole fusion remains unknown. PI(3,5)P is made by the PI3P 5-kinase Fab1 and has been characterized as a regulator of vacuole fission during hyperosmotic shock, where it interacts with the TRP Ca channel Yvc1.

View Article and Find Full Text PDF

During in vitro homotypic yeast vacuole fusion Ca is transported into and out of the organelle lumen. In vitro, Ca is taken up from the medium by vacuoles upon the addition of ATP. During the docking stage of vacuole fusion Ca is effluxed from the lumen upon the formation of trans-SNARE complexes between vesicles.

View Article and Find Full Text PDF

Protein-lipid binding interactions play a key role in the regulation of peripheral membrane protein function. Liposome-binding assays are a simple and affordable means of screening for specific protein-lipid interactions. Liposomes are prepared by mixing phospholipid combinations of interest before drying and rehydration.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR) can be used to analyze both binding affinities and kinetic parameters between a ligand and an analyte. SPR can be performed by either cross-linking a given ligand to a sensor chip covalently or utilizing high-affinity non-covalent interactions to secure a ligand in a particular conformation to a chip, both of which have their potential advantages. SPR measurements are mass based and reflect the proportional amount of analyte bound to a given ligand at a given concentration when flowed at a set rate in order to determine the binding parameters of a given biochemical interaction.

View Article and Find Full Text PDF

Microscale thermophoresis is a relatively new technique used by an increasing number of academic laboratories to estimate relative binding affinities between ligand (analyte) that is titrated and a target (generally protein) that is either fluorescently labeled exogenously in the red or blue channel (labeled thermophoresis) or endogenously labeled via the presence of sufficient aromatic amino acid residues such as tryptophan (label-free thermophoresis). There are advantages and disadvantages to each technique; however, one major disadvantage of label-free thermophoresis is that protein-protein interactions cannot be measured, as generally most proteins have enough aromatic residues to generate an interfering signal. Thermophoresis can be used to determine steady-state binding affinities as between SNAREs and relevant binding partners of SNAREs and labeled thermophoresis is increasingly becoming a reliable technique to screen binding partners of fusion machinery to determine relevance in terms of direct biochemical interactions.

View Article and Find Full Text PDF

Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5-bisphosphate [PI(4,5)P ], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P , and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1.

View Article and Find Full Text PDF