The capacity of indoor plants including green walls to capture, deposit and remediate individual volatile organic compounds (VOCs) has been well documented. However, in realistic settings, plant systems are exposed to a complex mixture of VOCs from highly varied various emission sources. Gasoline vapour is one of the major sources of these emissions, containing high concentrations of the carcinogens benzene, toluene, ethylbenzene and xylene (BTEX).
View Article and Find Full Text PDFBackground: Sporadic Alzheimer's disease (AD) occurs in 99% of all cases and can be influenced by air pollution such as diesel emissions and more recently, an iron oxide particle, magnetite, detected in the brains of AD patients. However, a mechanistic link between air pollutants and AD development remains elusive.
Aim: To study the development of AD-relevant pathological effects induced by air pollutant particle exposures and their mechanistic links, in wild-type and AD-predisposed models.
Wildfires that raged across Australia during the 2019-2020 'Black Summer' produced an enormous quantity of particulate matter (PM) pollution, with plumes that cloaked many urban centres and ecosystems along the eastern seaboard. This has motivated a need to understand the magnitude and nature of PM exposure, so that its impact on both built and natural environments can be more accurately assessed. Here we present the potentially toxic fingerprint of PM captured by building heating, ventilation, and air conditioning filters in Sydney, Australia during the peak of the Wildfires, and from ambient urban emissions one year later (Reference period).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2023
The capacity for indoor plants including green wall systems to remove specific volatile organic compounds (VOCs) is well documented in the literature; however under realistic settings, indoor occupants are exposed to a complex mixture of harmful compounds sourced from various emission sources. Gasoline vapour is one of the key sources of these emissions, with several studies demonstrating that indoor occupants in areas surrounding gasoline stations or with residentially attached garages are exposed to far higher concentrations of harmful VOCs. Here we assess the potential of a commercial small passive green wall system, commercially named the 'LivePicture Go' from Ambius P/L, Australia, to drawdown VOCs that comprise gasoline vapour, including total VOC (TVOC) removal and specific removal of individual speciated VOCs over time.
View Article and Find Full Text PDFPlants (Basel)
November 2022
Given the importance of angiostrongyliasis as an emerging infectious disease of humans, companion animals, and wildlife, the current study focused on the transmission dynamics of first- and third-stage larvae of the parasitic nematode, . The migration of infective larvae and their subsequent distribution within the Lymnaeidae snail, , were investigated over time using microscopic examination of histological sections and fresh tissue. Snails were divided into four anatomical regions: (i) anterior and (ii) posterior cephalopedal masses, (iii) mantle skirt and (iv) visceral mass.
View Article and Find Full Text PDFDespite the growing use of control measures, environmental tobacco smoke (ETS) remains a significant pollutant source in indoor air in many areas of the world. Current control methods for reducing ETS exposure are inadequate to protect public health in environments where cigarettes are smoked. An alternative solution is botanical biofiltration which has previously been shown to lower concentrations of volatile organic compounds (VOCs) and particulate matter (PM) from a range of polluted air streams.
View Article and Find Full Text PDFUrban densification continues to present a unique set of economic and environmental challenges. A growing shortage of green space and infrastructure is intrinsically linked with urban growth and development. With this comes the loss of ecosystem services such as urban heat island effects, reduction of air quality and biodiversity loss.
View Article and Find Full Text PDFCurrently no sustainable, economical and scalable systems have been developed for the direct removal of roadside air pollutants at their source. Here we present a simple and effective air filtering technology: botanical biofiltration, and the first field assessment of three different botanical biofilter designs for the filtration of traffic associated air pollutants - NO, O and PM - from roadside ambient air in Sydney, Australia. Over two six month research campaigns, we show that all of the tested systems filtered NO, O and PM with average single pass removal efficiencies of up to 71.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2020
Green walls have previously demonstrated the capacity to reduce particulate matter (PM), noise pollution, and temperature conditions in manipulative experiments and computational models. There is, however, minimal evidence that green walls can influence ambient environmental conditions, especially taking into account the variable environmental conditions encountered . The aim of this paper was to determine if green walls have a quantitative effect on ambient air quality in an urban environment.
View Article and Find Full Text PDFInt J Phytoremediation
April 2020
In order to better design greening systems for effective particulate matter (PM) removal, it is important to understand the impact leaf traits have on PM deposition. There are however, inconsistences amongst the leaf traits that have previously been correlated with PM accumulation. The aim of this paper was to identify vegetation characteristics of green wall plants that were associated with the accumulation of particulate matter.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) are of public concern due to their adverse health effects. Botanical air filtration is a promising technology for reducing indoor air contaminants, but the underlying mechanisms are not fully understood. This study assessed active botanical biofilters for their single-pass removal efficiency (SPRE) for benzene, ethyl acetate and ambient total volatile organic compounds (TVOCs), at concentrations of in situ relevance.
View Article and Find Full Text PDFGlobal urbanisation has resulted in population densification, which is associated with increased air pollution, mainly from anthropogenic sources. One of the systems proposed to mitigate urban air pollution is urban forestry. This study quantified the spatial associations between concentrations of CO, NO₂, SO₂, and PM₁₀ and urban forestry, whilst correcting for anthropogenic sources and sinks, thus explicitly testing the hypothesis that urban forestry is spatially associated with reduced air pollution on a city scale.
View Article and Find Full Text PDFPoor air quality is an emerging world-wide problem, with most urban air pollutants arising from vehicular emissions. As such, localized high pollution environments, such as traffic tunnels pose a significant health risk. Phytoremediation, including the use of active (ventilated) green walls or botanical biofilters, is gaining recognition as a potentially effective method for air pollution control.
View Article and Find Full Text PDFFungi are undoubtedly important for ecosystem functioning; however, they have been omitted or given scant attention in most biodiversity policy documents, management plans, and formal conservation schedules throughout the world. This oversight may be due to a general lack of awareness in the scientific community and compounded by a scarcity of mycology-associated curricula at the tertiary level and a lack of mycologists in research institutions. Although molecular techniques advance the systematic cataloging of fungi and facilitate insights into fungal communities, the scarcity of professional mycologists in the environmental sciences hampers conservation efforts.
View Article and Find Full Text PDFBackground: Gene therapy is one treatment that may ultimately cure type 1 diabetes. We have previously shown that the introduction of furin-cleavable human insulin (INS-FUR) to the livers in several animal models of diabetes resulted in the reversal of diabetes and partial pancreatic transdifferentiation of liver cells. The present study investigated whether streptozotocin-diabetes could be reversed in FRG mice in which chimeric mouse-human livers can readily be established and, in addition, whether pancreatic transdifferentiation occurred in the engrafted human hepatocytes.
View Article and Find Full Text PDFIn recent years, research into the efficacy of indoor air biofiltration mechanisms, notably living green walls, has become more prevalent. Whilst green walls are often utilised within the built environment for their biophilic effects, there is little evidence demonstrating the efficacy of active green wall biofiltration for the removal of volatile organic compounds (VOCs) at concentrations found within an interior environment. The current work describes a novel approach to quantifying the VOC removal effectiveness by an active living green wall, which uses a mechanical system to force air through the substrate and plant foliage.
View Article and Find Full Text PDFOsmoregulation is a key physiological function, critical for homeostasis. The basic physiological mechanisms of osmoregulation are thought to be well established. However, through a series of experiments exposing the freshwater mayfly nymph (Ephemeroptera) to increasing salinities, we present research that challenges the extent of current understanding of the relationship between osmoregulation and mortality.
View Article and Find Full Text PDFHabitat fragmentation in urban environments concentrates bird populations that have managed to adapt to these newly developed areas. Consequently, the roosts of these birds are potentially creating environments conducive to fungal growth and dissemination. Airborne fungi derived from these environments are relatively unstudied, as is the potential health risk arising from these fungi.
View Article and Find Full Text PDFAs an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l.
View Article and Find Full Text PDFObjective: Carnosine has been shown to modulate triglyceride and glycation levels in cell and animal systems. In this study we investigated whether prolonged supplementation with carnosine inhibits atherosclerosis and markers of lesion stability in hyperglycaemic and hyperlipidaemic mice.
Methods: Streptozotocin-induced diabetic apo E(-/-) mice were maintained for 20 weeks, post-induction of diabetes.
DNA profiling evidence presented in court should be accompanied by a reliable estimate of its evidential weight. In calculating such statistics, allele frequencies from commonly employed autosomal microsatellite loci are required. These allele frequencies should be collected at a level that appropriately represents the genetic diversity that exists in the population.
View Article and Find Full Text PDFSolute carrier family 11 member a1 (SLC11A1) exerts pleiotropic effects on macrophage function. Expression of SLC11A1 is regulated by a (GT)(n) microsatellite promoter repeat polymorphism of which nine alleles have been described. Enhanced activation of macrophages, associated with increased expression from allele 3, may be functionally linked to the development of autoimmune and inflammatory diseases.
View Article and Find Full Text PDF