Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices.
View Article and Find Full Text PDFCapabilities in real-time monitoring of internal physiological processes could inform pharmacological drug-delivery schedules, surgical intervention procedures and the management of recovery and rehabilitation. Current methods rely on external imaging techniques or implantable sensors, without the ability to provide continuous information over clinically relevant timescales, and/or with requirements in surgical procedures with associated costs and risks. Here, we describe injectable classes of photonic devices, made entirely of materials that naturally resorb and undergo clearance from the body after a controlled operational lifetime, for the spectroscopic characterization of targeted tissues and biofluids.
View Article and Find Full Text PDFPurpose: Drug delivery by intravitreal injection remains problematic, small agents and macromolecules both clearing rapidly. Typical carriers use microparticles (>2 μm), with size-related liabilities, to slow diffusion. We recently described cationic nanoparticles (NP) where conjugated Arg peptides prolonged residence in rat eyes, through ionic interaction with vitreal poly-anions.
View Article and Find Full Text PDFIn 2015, as part of the Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative, we published a Registered Report (Shan et al., 2015) that described how we intended to replicate selected experiments from the paper "Androgen Receptor Splice Variants Determine Taxane Sensitivity in Prostate Cancer" (Thadani-Mulero et al., 2014).
View Article and Find Full Text PDFIn 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Kandela et al., 2015) that described how we intended to replicate selected experiments from the paper "BET bromodomain inhibition as a therapeutic strategy to target c-Myc" (Delmore et al., 2011).
View Article and Find Full Text PDFIn 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Kandela et al., 2015) that described how we intended to replicate selected experiments from the paper "Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data" (Sirota et al., 2011).
View Article and Find Full Text PDFIn 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Kandela et al., 2015) that described how we intended to replicate selected experiments from the paper "Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs" (Sugahara et al., 2010).
View Article and Find Full Text PDFPrenatal androgen produces many reproductive and metabolic features of polycystic ovary syndrome in female rodents, sheep, and monkeys. We investigated the impact of such prenatal treatment in adult male rats. Pregnant dams received free testosterone (T; aromatizable androgen), dihydrotestosterone (D; nonaromatizable androgen), or vehicle control (C) on embryonic days 16-19.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2008
Androgen exposure during intrauterine life in nonhuman primates and in sheep results in a phenocopy of the reproductive and metabolic features of polycystic ovary syndrome (PCOS). Such exposure also results in reproductive features of PCOS in rodents. We investigated whether transient prenatal androgen treatment produced metabolic abnormalities in adult female rats and the mechanisms of these changes.
View Article and Find Full Text PDFInsulin resistance in polycystic ovary syndrome (PCOS) results from a postbinding defect in signaling. Insulin receptor and insulin receptor substrate (IRS)-1 serine hyperphosphorylation by an unidentified kinase(s) contributes to this defect. We investigated whether insulin resistance is selective, affecting metabolic but not mitogenic pathways, in skeletal muscle as it is in cultured skin fibroblasts in PCOS.
View Article and Find Full Text PDFIn humans, low birth weight and increased placental weight can be associated with cardiovascular disease in adulthood. Low birth weight and increased placental size are known to occur after fetal alcohol exposure or prenatal glucocorticoid administration. Thus the effects of removing the alcohol-induced increase in maternal corticosterone by maternal adrenalectomy on predictors of cardiovascular disease in adulthood were examined in rats.
View Article and Find Full Text PDF