Publications by authors named "Franziska Waldow"

Legionella micdadei is responsible for community- or nosocomial-acquired pneumonia as well as the influenza-like illness Pontiac fever. The aim of this study was to investigate the ability of L. micdadei to utilize extracellular choline for phosphatidylcholine (PC) synthesis and its consequences for the phospholipid composition of its membrane system and the interaction with the human LL-37 peptide.

View Article and Find Full Text PDF

Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition.

View Article and Find Full Text PDF

The Mycobacterium tuberculosis-harboring granuloma with a necrotic center surrounded by a fibrous capsule is the hallmark of tuberculosis (TB). For a successful treatment, antibiotics need to penetrate these complex structures to reach their bacterial targets. Hence, animal models reflecting the pulmonary pathology of TB patients are of particular importance to improve the preclinical validation of novel drug candidates.

View Article and Find Full Text PDF

In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB.

View Article and Find Full Text PDF

Tuberculosis is a bacterial infectious disease that is mainly transmitted from human to human via infectious aerosols. Currently, tuberculosis is the leading cause of death by an infectious disease world-wide. In the past decade, the number of patients affected by tuberculosis has increased by ~20 percent and the emergence of drug-resistant strains of challenges the goal of elimination of tuberculosis in the near future.

View Article and Find Full Text PDF

Adequate perception of immunologically important pathogen-associated molecular patterns like lipopolysaccharide and bacterial lipoproteins is essential for efficient innate and adaptive immune responses. In the context of Gram-negative infection, bactericidal/permeability-increasing protein (BPI) neutralizes endotoxic activity of lipopolysaccharides, and thus prohibits hyperactivation. So far, no immunological function of BPI has been described in Gram-positive infections.

View Article and Find Full Text PDF

The bacterial lung pathogen has a unique nutritional requirement for exogenous choline and attaches phosphorylcholine (-Cho) residues to the GalNAc moieties of its teichoic acids (TAs) in its cell wall. Two phosphorylcholine transferases, LicD1 and LicD2, mediate the attachment of -Cho to the O-6 positions of the two GalNAc residues present in each repeating unit of pneumococcal TAs (pnTAs), of which only LicD1 has been determined to be essential. At the molecular level, the specificity of the -Cho attachment to pnTAs by LicD1 and LicD2 remains still elusive.

View Article and Find Full Text PDF

Teichoic acid (TA), a crucial cell wall constituent of the pathobiont Streptococcus pneumoniae, is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA). Both TA polymers share a common precursor synthesis pathway, but differ in the final transfer of the TA chain to either peptidoglycan or a glycolipid. Here, we show that LTA exhibits a different linkage conformation compared to WTA, and identify TacL (previously known as RafX) as a putative lipoteichoic acid ligase required for LTA assembly.

View Article and Find Full Text PDF

Apolipophorin III (apoLp-III), an insect homologue of human apolipoprotein E (apoE), is a widely used model protein in studies on protein-lipid interactions, and anti-Legionella activity of Galleria mellonella apoLp-III has been documented. Interestingly, exogenous choline-cultured Legionella dumoffii cells are considerably more susceptible to apoLp-III than non-supplemented bacteria. In order to explain these differences, we performed, for the first time, a detailed analysis of L.

View Article and Find Full Text PDF