Forisomes are large mechanoprotein complexes found solely in legumes such as Medicago truncatula. They comprise several "sieve element occlusion by forisome" (SEO-F) subunits, with MtSEO-F1 as the major structure-forming component. SEO-F proteins possess three conserved domains -an N-terminal domain (SEO-NTD), a potential thioredoxin fold, and a C-terminal domain (SEO-CTD)- but structural and biochemical data are scarce and little is known about the contribution of these domains to forisome assembly.
View Article and Find Full Text PDFThe immobilisation of enzymes plays an important role in many applications, including biosensors that require enzyme activity, stability and recyclability in order to function efficiently. Here we show that forisomes (plant-derived mechanoproteins) can be functionalised with enzymes by translational fusion, leading to the assembly of structures designated as forizymes. When forizymes are expressed in the yeast Saccharomyces cerevisiae, the enzymes are immobilised by the self-assembly of forisome subunits to form well-structured protein bodies.
View Article and Find Full Text PDFPlant Signal Behav
November 2015
Forisomes are specialized multimeric protein complexes found only in the papilionoid legumes. They undergo a reversible conformational change in response to phloem injury to enable the occlusion of sieve tubes, thus preventing the loss of photoassimilates. The individual subunits are designated by the letters SEO-F (sieve element occlusion by forisomes) and are part of the larger SEO protein family, which also includes the typical P-proteins found in most dicots and some monocots.
View Article and Find Full Text PDF