Inorganic colloidal cesium lead halide perovskite nanocrystals (NCs) encapsulated by surface capping ligands exhibit tremendous potential in optoelectronic applications, with their surface structure playing a pivotal role in enhancing their photophysical properties. Soy lecithin, a tightly binding zwitterionic surface-capping ligand, has recently facilitated the high-yield synthesis of stable ultraconcentrated and ultradilute colloids of CsPbX NCs, unlocking a myriad of potential device applications. However, the atomic-level understanding of the ligand-terminated surface structure remains uncertain.
View Article and Find Full Text PDFColloidal nuclear magnetic resonance (cNMR) spectroscopy on inorganic cesium lead halide nanocrystals (CsPbX NCs) is found to serve for noninvasive characterization and quantification of disorder within these structurally soft and labile particles. In particular, we show that Cs cNMR is highly responsive to size variations from 3 to 11 nm or to altering the capping ligands on the surfaces of CsPbX NCs. Distinct Cs signals are attributed to the surface and core NC regions.
View Article and Find Full Text PDFIn semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occupied by a previous exciton. Using transient photoluminescence microscopy, we observe a striking dependence of the apparent exciton diffusivity on excitation laser power that does not arise from nonlinear exciton-exciton interactions or thermal heating.
View Article and Find Full Text PDFThe relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials.
View Article and Find Full Text PDFThe soft lattice of lead-halide perovskite nanocrystals (NCs) allows tuning their optoelectronic characteristics via anion exchange by introducing halide salts to a solution of perovskite NCs. Similarly, cross-anion exchange can occur upon mixing NCs of different perovskite halides. This process, though, is detrimental for applications requiring perovskite NCs with different halides in close proximity.
View Article and Find Full Text PDFSemiconductor quantum dots have long been considered artificial atoms, but despite the overarching analogies in the strong energy-level quantization and the single-photon emission capability, their emission spectrum is far broader than typical atomic emission lines. Here, by using ab-initio molecular dynamics for simulating exciton-surface-phonon interactions in structurally dynamic CsPbBr quantum dots, followed by single quantum dot optical spectroscopy, we demonstrate that emission line-broadening in these quantum dots is primarily governed by the coupling of excitons to low-energy surface phonons. Mild adjustments of the surface chemical composition allow for attaining much smaller emission linewidths of 35-65 meV (vs.
View Article and Find Full Text PDFA comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature.
View Article and Find Full Text PDFNonresonant optical driving of confined semiconductors can open up exciting opportunities for experimentally realizing strongly interacting photon-dressed (Floquet) states through the optical Stark effect (OSE) for coherent modulation of the exciton state. Here we report the first room-temperature observation of the Floquet biexciton-mediated anomalous coherent excitonic OSE in CsPbBr quantum dots (QDs). Remarkably, the strong exciton-biexciton interaction leads to a coherent red shift and splitting of the exciton resonance as a function of the drive photon frequency, similar to Autler-Townes splitting in atomic and molecular systems.
View Article and Find Full Text PDFFundamental photophysical behavior in CsPbBr nanocrystals (NCs), especially at low temperatures, is under active investigation. While many studies have reported temperature-dependent photoluminescence, comparatively few have focused on understanding the temperature-dependent absorption spectrum. Here, we report the temperature-dependent (35-300 K) absorption and photoluminescence spectra of zwitterionic ligand-capped CsPbBr NCs with four different edge lengths ( = 4.
View Article and Find Full Text PDFLigand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics-large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times-rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use.
View Article and Find Full Text PDFFast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging.
View Article and Find Full Text PDFThe relaxation of high-energy "hot" carriers in semiconductors is known to involve the redistribution of energy between hot and cold carriers, as well as the transfer of energy from hot carriers to phonons. Over the past few years, these two processes have been identified in lead-halide perovskites (LHPs) using ultrafast pump-probe experiments, but their interplay is not fully understood. Here we present a practical and intuitive kinetic model that accounts for the effects of both hot and cold carriers on carrier relaxation in LHPs.
View Article and Find Full Text PDFLead-halide perovskites increasingly mesmerize researchers because they exhibit a high degree of structural defects and dynamics yet nonetheless offer an outstanding (opto)electronic performance on par with the best examples of structurally stable and defect-free semiconductors. This highly unusual feature necessitates the adoption of an experimental and theoretical mindset and the reexamination of techniques that may be uniquely suited to understand these materials. Surprisingly, the suite of methods for the structural characterization of these materials does not commonly include nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFUnderstanding the structure and dynamics of newcomer optoelectronic materials - lead halide perovskites APbX [A = Cs, methylammonium (CHNH, MA), formamidinium (CH(NH), FA); X = Cl, Br, I] - has been a major research thrust. In this work, new insights could be gained by using Pb solid-state nuclear magnetic resonance (NMR) spectroscopy at variable temperatures between 100 and 300 K. The existence of scalar couplings J of ca.
View Article and Find Full Text PDFSingle cesium lead bromide (CsPbBr) nanocrystals show strong photoluminescence intermittency, with on- and off- dwelling times following power-law distributions. We investigate the correlations for successive on-times and successive off-times, and find a memory effect in the photoluminescence intermittency of such inorganic perovskite nanocrystals. This memory effect is not sensitive to the nature of the surface capping ligand and the embedding polymer.
View Article and Find Full Text PDFCarrier cooling is of widespread interest in the field of semiconductor science. It is linked to carrier-carrier and carrier-phonon coupling and has profound implications for the photovoltaic performance of materials. Recent transient optical studies have shown that a high carrier density in lead-halide perovskites (LHPs) can reduce the cooling rate through a "phonon bottleneck".
View Article and Find Full Text PDFThe use of lead halide perovskites in optoelectronic and photonic devices is mainly limited by insufficient long-term stability of these materials. This issue is receiving growing attention, mainly owing to the operational stability improvement of lead halide perosvkites solar cells. On the contrary, fewer efforts are devoted to the stability improvement of light amplification and lasing.
View Article and Find Full Text PDFAttaining thermodynamic stability of colloids in a broad range of concentrations has long been a major thrust in the field of colloidal ligand-capped semiconductor nanocrystals (NCs). This challenge is particularly pressing for the novel NCs of cesium lead halide perovskites (CsPbX; X = Cl, Br) owing to their highly dynamic and labile surfaces. Herein, we demonstrate that soy lecithin, a mass-produced natural phospholipid, serves as a tightly binding surface-capping ligand suited for a high-reaction yield synthesis of CsPbX NCs (6-10 nm) and allowing for long-term retention of the colloidal and structural integrity of CsPbX NCs in a broad range of concentrations-from a few ng/mL to >400 mg/mL (inorganic core mass).
View Article and Find Full Text PDFCesium lead halide perovskite nanocrystals are promising emissive materials for a variety of optoelectronic applications. To fully realize the potential of these materials, we must understand the energetics and dynamics of multiexciton states which are populated under device relevant excitation conditions. We utilized time-resolved and spectrally-resolved photoluminescence studies to investigate the biexciton binding energy as well as a red-shifted emission feature previously reported under high-flux excitation conditions.
View Article and Find Full Text PDFLead-halide perovskite APbX (A = Cs or organic cation; X = Cl, Br, I) nanocrystals (NCs) are the subject of intense research due to their exceptional characteristics as both classical and quantum light sources. Many challenges often faced with this material class concern the long-term optical stability, a serious intrinsic issue connected with the labile and polar crystal structure of APbX compounds. When conducting spectroscopy at a single particle level, due to the highly enhanced contaminants (e.
View Article and Find Full Text PDFNanocrystalline lead halide perovskites are promising as emissive layers for light-emitting diodes due to their bright, tunable emission with very narrow linewidths. Blue perovskite light-emitting diodes, in the wavelength range useful for display applications (460-470 nm), could be made with CsPb(Br/Cl) nanocrystals (NCs). However, mixed halide perovskites suffer from color instability, foremost, due to the segregation of halide ions.
View Article and Find Full Text PDFChemically made colloidal semiconductor quantum dots have long been proposed as scalable and color-tunable single emitters in quantum optics, but they have typically suffered from prohibitively incoherent emission. We now demonstrate that individual colloidal lead halide perovskite quantum dots (PQDs) display highly efficient single-photon emission with optical coherence times as long as 80 picoseconds, an appreciable fraction of their 210-picosecond radiative lifetimes. These measurements suggest that PQDs should be explored as building blocks in sources of indistinguishable single photons and entangled photon pairs.
View Article and Find Full Text PDF