Diabetic cardiomyopathy substantially accounts for mortality in diabetes mellitus. The pathophysiological mechanism underlying diabetes-associated nonischemic heart failure is poorly understood and clinical data on myocardial mechanics in early stages of diabetes are lacking. In this study we utilize speckle tracking echocardiography combined with physical stress testing in order to evaluate whether left ventricular (LV) myocardial performance is altered early in the course of uncomplicated type 1 diabetes mellitus (T1DM).
View Article and Find Full Text PDFBackground: Echocardiographic myocardial performance parameters such as strain and strain rate are increasingly used to assess systolic and diastolic function in patients with diabetes mellitus and several other clinical and scientific scenarios. While long-term metabolic marks such as HbA1C are inherently assessed in diabetic patients, the actual blood glucose level at the very moment of the echocardiographic study has not yet been taken into account for the assessment of cardiac mechanics. The aim of this study was to investigate the influence of real-time blood glucose levels on left ventricular (LV) myocardial strain and strain rate in pediatric patients with type 1 diabetes mellitus (T1DM).
View Article and Find Full Text PDF