Ligand-induced tumor necrosis factor receptor 1 (TNFR1) activation controls nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling, cell proliferation, programmed cell death, and survival and is crucially involved in inflammation, autoimmune disorders, and cancer progression. Despite the relevance of TNFR1 clustering for signaling, oligomerization of ligand-free and ligand-activated TNFR1 remains controversial. At present, models range from ligand-independent receptor predimerization to ligand-induced oligomerization.
View Article and Find Full Text PDFPhotoswitchable or photoactivatable fluorophores are the key in single-molecule localization microscopy. Next to providing fluorescence images with subdiffraction spatial resolution, additional information is available from observing single fluorophores over time. This includes the characteristic photophysical phenomenon of "blinking" that is exhibited by single fluorescent proteins or fluorophores and follows well-defined kinetic laws.
View Article and Find Full Text PDFUbiquitination of invading Salmonella Typhimurium triggers autophagy of cytosolic bacteria and restricts their spread in epithelial cells. Ubiquitin (Ub) chains recruit autophagy receptors such as p62/SQSTM1, NDP52/CALCOCO and optineurin (OPTN), which initiate the formation of double-membrane autophagosomal structures and lysosomal destruction in a process known as xenophagy. Besides this, the functional consequences and mechanistic regulation of differentially linked Ub chains at the host-Salmonella interface have remained unexplored.
View Article and Find Full Text PDFSingle-molecule localization microscopy (SMLM) can be used to count fluorescently labeled molecules even when they are not individually resolved. We demonstrate SMLM molecule counting for nucleic acids labeled with the organic fluorophore Alexa Fluor 647 and imaged under photoswitching conditions. From the observed distributions of the number of fluorophore blinking events, we extract the number of fluorophores per spot using a statistical model.
View Article and Find Full Text PDFMost biomolecular processes rely on tightly controlled stoichiometries, from the formation of molecular assemblies to cellular signaling. Single-molecule localization micro-scopy studies of fluorophore blinking offer a promising route to probe oligomeric states. Here we show that the distribution of the number of blinking events assumes a universal functional form, independent of photophysics, under relatively mild assumptions.
View Article and Find Full Text PDFProbing the oligomeric state of abundant molecules, such as membrane proteins in intact cells, is essential, but has not been straightforward. We address this challenge with a simple counting strategy that is capable of reporting the oligomeric state of dense, membrane-bound protein complexes. It is based on single-molecule localization microscopy to super-resolve protein structures in intact cells and basic quantitative evaluation.
View Article and Find Full Text PDFMembrane receptors control fundamental cellular processes. Binding of a specific ligand to a receptor initiates communication through the membrane and activation of signaling cascades. This activation process often leads to a spatial rearrangement of receptors in the membrane at the molecular level.
View Article and Find Full Text PDFProtein–ligand interactions play an important role in many biological processes. Notably, membrane receptors are the starting point for a huge variety of cellular signal transduction pathways. Quantifying the binding affinity of a ligand for its transmembrane receptor is of great importance as it provides information on the potency of the ligand.
View Article and Find Full Text PDFThe localization precision is a crucial and important parameter for single-molecule localization microscopy (SMLM) and directly influences the achievable spatial resolution. It primarily depends on experimental imaging conditions and the registration potency of the algorithm used. We propose a new and simple routine to estimate the average experimental localization precision in SMLM, based on the nearest neighbor analysis.
View Article and Find Full Text PDFWe report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1.
View Article and Find Full Text PDF