Publications by authors named "Franz-Josef Haug"

A highly efficient hole-selective passivating contact remains the crucial step required to increase the efficiency of polysilicon-based Si solar cells. The future development of solar modules depends on a device structure that can complement the electron-selective tunnel oxide passivating contact with an equivalent hole-selective contact. We investigate plasma enhanced chemical vapor deposited (PECVD) SiN and atomic layer deposited AlO as alternative nanolayers for the passivation layer in polysilicon tunnel contacts.

View Article and Find Full Text PDF

Full-area passivating contacts based on SiO/poly-Si stacks are key for the new generation of industrial silicon solar cells substituting the passivated emitter and rear cell (PERC) technology. Demonstrating a potential efficiency increase of 1 to 2% compared to PERC, the utilization of n-type wafers with an n-type contact at the back and a p-type diffused boron emitter has become the industry standard in 2024. In this work, variations of this technology are explored, considering p-type passivating contacts on p-type Si wafers formed via a rapid thermal processing (RTP) step.

View Article and Find Full Text PDF

The integration of passivating contacts based on a highly doped polycrystalline silicon (poly-Si) layer on top of a thin silicon oxide (SiO) layer has been identified as the next step to further increase the conversion efficiency of current mainstream crystalline silicon (c-Si) solar cells. However, the interrelation between the final properties of poly-Si/SiO contacts and their fabrication process has not yet been fully unraveled, which is mostly due to the challenge of characterizing thin-film stacks with features in the nanometric range. Here, we apply in situ X-ray reflectometry and diffraction to investigate the multiscale (1 Å-100 nm) structural evolution of poly-Si contacts during annealing up to 900 °C.

View Article and Find Full Text PDF

We investigate hole-selective passivating contacts that consist of an interfacial layer of silicon oxide (SiO) and a layer of boron-doped SiC(p). The fabrication process of these contacts involves an annealing step at temperatures above 750 °C which crystallizes the initially amorphous layer and diffuses dopants across the interfacial oxide into the wafer to facilitate charge transport, but it can also disrupt the SiO layer necessary for wafer-surface passivation. To investigate the transport mechanism of the charge carriers through the selective contact and its changes during the annealing process, we utilize various characterization methods, such as transmission electron microscopy, micro Raman spectroscopy, and conductive atomic force microscopy.

View Article and Find Full Text PDF

The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC(p)] layer and then annealed at 800-900 °C.

View Article and Find Full Text PDF

We present and experimentally validate a computational model for the light propagation in thin-film solar cells that integrates non-paraxial scalar diffraction theory with non-sequential ray-tracing. The model allows computing the spectral layer absorbances of solar cells with micro- and nano-textured interfaces directly from measured surface topographies. We can thus quantify decisive quantities such as the parasitic absorption without relying on heuristic scattering intensity distributions.

View Article and Find Full Text PDF

We demonstrate self-patterned insulating nanoparticle layers to define local electrical interconnects in thin-film electronic devices. We show this with thin-film silicon tandem solar cells, where we introduce between the two component cells a solution-processed SiO2 nanoparticle layer with local openings to allow for charge transport. Because of its low refractive index, high transparency, and smooth surface, the SiO2 nanoparticle layer acts as an excellent intermediate reflector allowing for efficient light management.

View Article and Find Full Text PDF
Article Synopsis
  • Solar cells using organometallic halide perovskite layers, specifically CH3NH3PbI3, show great potential for high efficiency in converting sunlight to energy.
  • Measurements reveal that these perovskite thin films have a high absorption coefficient and a sharply defined absorption spectrum, indicating strong electronic properties and a well-ordered microstructure.
  • However, exposure to moisture negatively affects the material's absorption at lower photon energies, suggesting changes in its composition.
View Article and Find Full Text PDF

We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We use stencil lithography to produce the same periodic arrangement of the particles and we use the same solar cell structure on top, thus establishing a fair comparison between a novel plasmonic concept and its more traditional counterpart.

View Article and Find Full Text PDF

We describe a nanomoulding technique which allows low-cost nanoscale patterning of functional materials, materials stacks and full devices. Nanomoulding combined with layer transfer enables the replication of arbitrary surface patterns from a master structure onto the functional material. Nanomoulding can be performed on any nanoimprinting setup and can be applied to a wide range of materials and deposition processes.

View Article and Find Full Text PDF

Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on the random pyramidal morphology of transparent zinc oxide electrodes. Based on insights from waveguide theory, we develop tailored periodic arrays of nanocavities on glass fabricated by nanosphere lithography, which enable a cell with a remarkable short-circuit current density of 17.

View Article and Find Full Text PDF

We demonstrate high-efficiency thin-film silicon solar cells with transparent nanotextured front electrodes fabricated via ultraviolet nanoimprint lithography on glass substrates. By replicating the morphology of state-of-the-art nanotextured zinc oxide front electrodes known for their exceptional light trapping properties, conversion efficiencies of up to 12.0% are achieved for micromorph tandem junction cells.

View Article and Find Full Text PDF

Despite the progress in the engineering of structures to enhance photocurrent in thin film solar cells, there are few comprehensive studies which provide general and intuitive insight into the problem of light trapping. Also, lack of theoretical propositions which are consistent with fabrication is an issue to be improved. We investigate a real thin film solar cell with almost conformal layers grown on a 1D grating metallic back-reflector both experimentally and theoretically.

View Article and Find Full Text PDF

We present X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) investigations of CuO thin films electrochemically deposited on an Au(001) single-crystal surface from a solution containing chiral tartaric acid (TA). The presence of enantiopure TA in the deposition process results in a homochiral CuO surface, as revealed by XPD. On the other hand, XPD patterns of films deposited with racemic tartaric acid or the "achiral" meso-tartaric acid are completely symmetric.

View Article and Find Full Text PDF