Nitrogen (N) nutrition impacts on primary carbon metabolism and can lead to changes in δC of respired CO. However, uncertainty remains as to whether (1) the effect of N nutrition is observed in all species, (2) N source also impacts on respired CO in roots and (3) a metabolic model can be constructed to predict δC of respired CO under different N sources. Here, we carried out isotopic measurements of respired CO and various metabolites using two species (spinach, French bean) grown under different NH :NO ratios.
View Article and Find Full Text PDFSolina is an example of a bread wheat landrace that has been conserved in situ for centuries in Central Italy. A core collection of Solina lines sampled in areas at different altitudes and climatic conditions was obtained and genotyped. A clustering analysis based on a wide SNP dataset generated from DArTseq analysis outlined the existence of two main groups, which, after F analysis, showed polymorphism in genes associated with vernalization and photoperiod response.
View Article and Find Full Text PDFThe carbon isotopic composition (δC) of foliage is often used as proxy for plant performance. However, the effect of vs. supply on δC of leaf metabolites and respired CO is largely unknown.
View Article and Find Full Text PDFThe rising atmospheric CO concentration is expected to exert a strong impact on crop production, enhancing crop growth but threatening food security and safety. An improver wheat, a hybrid, and its parents were grown at elevated CO e[CO] in open field, and their yield and rheological, nutritional, and sanitary quality were assessed. For all cultivars, grain yield increased (+16%) and protein content decreased (-7%), accompanied by a reduction in dough strength.
View Article and Find Full Text PDFUnder global climate change forecasts, the pressure of environmental stressors (and in particular drought) on crop productivity is expected to rise and challenge further global food security. The application of beneficial microorganisms may represent an environment friendly tool to secure improved crop performance and yield stability. Accordingly, this current study aimed at elucidating the metabolomic responses triggered by mycorrhizal (Funneliformis mosseae) inoculation of durum (Triticum durum Desf.
View Article and Find Full Text PDFUnlabelled: Arbuscular mycorrhizal fungi (AMF) are plant growth promoters that ameliorate plant-water relations and the nutrient uptake of wheat. In this work, two cultivars of Triticum spp., a bread and a durum wheat, grown under drought stress and inoculated or not by AMF, are evaluated through a shotgun proteomic approach.
View Article and Find Full Text PDFT-2 and HT-2 toxins are two of the most toxic members of type-A trichothecenes, produced by a number of Fusarium species. The occurrence of these mycotoxins was studied in barley samples during a survey carried out in the 2011-2014 growing seasons in climatically different regions in Italy. The percentage of samples found positive ranges from 22% to 53%, with values included between 26 and 787 μg/kg.
View Article and Find Full Text PDFInfinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding.
View Article and Find Full Text PDFThe goals of the present study were to obtain a first estimate of intraspecific variability of carbon isotope discrimination (Δ) in safflower, a thistle-like herbaceous plant, and to determine the statistical relationship between Δ and grain yield as well as its components in a collection of 45 accessions of different origins. Grain yield and aboveground biomass, harvest index, average grain weight, and Δ (measured on the bulk leaf organic matter) were investigated in experimental field conditions. A large variability was noted for all traits but a principal component analysis (PCA) allowed to identify several homogeneous groups of accessions.
View Article and Find Full Text PDFThe issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes.
View Article and Find Full Text PDFCarbon isotope composition in respired CO2 and organic matter of individual organs were measured on peanut seedlings during early ontogeny in order to compare fractionation during heterotrophic growth and transition to autotrophy in a species with lipid seed reserves with earlier results obtained on beans. Despite a high lipid content in peanut seeds (48%) compared with bean seeds (1.5%), the isotope composition of leaf- and root-respired CO2 as well as its changes during ontogeny were similar to already published data on bean seedlings: leaf-respired CO2 became (13)C-enriched reaching -21.
View Article and Find Full Text PDFIn general, leaves are (13) C-depleted compared with all other organs (e.g. roots, stem/trunk and fruits).
View Article and Find Full Text PDFWe present an online database that provides unrestricted and free access to over 16 million plant phenological observations from over 8,000 stations in Central Europe between the years 1880 and 2009. Unique features are (1) a flexible and unrestricted access to a full-fledged database, allowing for a wide range of individual queries and data retrieval, (2) historical data for Germany before 1951 ranging back to 1880, and (3) more than 480 curated long-term time series covering more than 100 years for individual phenological phases and plants combined over Natural Regions in Germany. Time series for single stations or Natural Regions can be accessed through a user-friendly graphical geo-referenced interface.
View Article and Find Full Text PDFThe chloroplast is the central switch of the plant's response to cold and light stress. The ability of many plant species to develop a cold tolerant phenotype is dependent on the presence of light and photosynthetic activity during low-temperature growth. Light exposure at low temperature stimulates an over-reduction of the plastoquinone pool as well as the accumulation of reactive oxygen species, and both metabolic conditions generate a retrograde signal controlling nuclear gene expression.
View Article and Find Full Text PDFWhile there is currently intense effort to examine the (13)C signal of CO(2) evolved in the dark, less is known on the isotope composition of day-respired CO(2). This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure c(i)/c(a) effect) from respiratory effect (production of CO(2) with a different delta(13)C value from that of net-fixed CO(2)) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO(2)].
View Article and Find Full Text PDFWide-spread post-photosynthetic fractionation processes deplete metabolites and plant compartments in (13)C relative to assimilates to varying degrees. Fragmentation fractionation and exchange of metabolites with distinct isotopic signatures across organ boundaries further modify the patterns of plant isotopic composition. Heterotrophic organs tend to become isotopically heavier than the putative source material as a result of respiratory metabolism.
View Article and Find Full Text PDFSubstantial evidence has been published in recent years demonstrating that postphotosynthetic fractionations occur in plants, leading to (13)C-enrichment in heterotrophic (as compared with autotrophic) organs. However, less is known about the mechanism responsible for changes in these responses during plant development. The isotopic signature of both organic matter and respired CO(2) for different organs of French bean (Phaseolus vulgaris) was investigated during early ontogeny, in order to identify the developmental stage at which isotopic changes occur.
View Article and Find Full Text PDFIn vitro-cultured plants typically show a low photosynthetic activity, which is considered detrimental to subsequent ex vitro acclimatization. Studies conducted so far have approached this problem by analysing the biochemical and photochemical aspects of photosynthesis, while very little attention has been paid to the role of leaf conductance to CO(2) diffusion, which often represents an important constraint to CO(2) assimilation in naturally grown plants. Mesophyll conductance, in particular, has never been determined in in vitro plants, and no information exists as to whether it represents a limitation to carbon assimilation during in vitro growth and subsequent ex vitro acclimatization.
View Article and Find Full Text PDFDiscrimination against 13C during photosynthesis is a well-characterised phenomenon. It leaves behind distinct signatures in organic matter of plants and in the atmosphere. The former is depleted in 13C, the latter is enriched during periods of preponderant photosynthetic activity of terrestrial ecosystems.
View Article and Find Full Text PDFModels of phenology are needed for the projection of effects of a changing climate on, for example, forest production, species competition, vegetation-atmosphere feedback and public health. A new phenology model for deciduous tree bud burst is developed and parameters are determined for a wide geographical range (Germany) and several forest tree species. The new model is based on considerations of simple interactions between inhibitory and promotory agents that are assumed to control the developmental status of a plant.
View Article and Find Full Text PDFThere are several applications of combined phenological time series; e.g., trend analysis with long continuous time series, obtaining a compound and representative time series around weather stations for model fitting, data gap filling and outlier detection.
View Article and Find Full Text PDF