Publications by authors named "Franz Plocksties"

Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment.

Aim: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model.

Methods: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus.

View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been a highly effective treatment option for mid-to-late-stage Parkinson's disease (PD) for decades. Besides direct effects on brain networks, neuroprotective effects of STN-DBS - potentially via alterations of growth factor expression levels - have been proposed as additional mechanisms of action.

Objective: In the context of clarifying DBS mechanisms, we analyzed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels in the basal ganglia, motor and parietal cortices, and dentate gyrus in an animal model of stable, severe dopaminergic deficiency.

View Article and Find Full Text PDF

Long-term deep brain stimulation (DBS) studies in rodents are of crucial importance for research progress in this field. However, most stimulation devices require jackets or large head-mounted systems which severely affect mobility and general welfare influencing animals' behavior.To develop a preclinical neurostimulation implant system for long-term DBS research in small animal models.

View Article and Find Full Text PDF

Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown.

View Article and Find Full Text PDF

The aim of the study was to establish electrical stimulation parameters in order to improve cell growth and viability of human adipose-derived stem cells (hADSC) when compared to non-stimulated cells in vitro. hADSC were exposed to continuous electrical stimulation with 1.7 V AC/20 Hz.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) of the globus pallidus internus (GPi, entopeduncular nucleus, EPN, in rodents) has become important for the treatment of generalized dystonia, a severe and often intractable movement disorder. It is unclear if lower frequencies of GPi-DBS or stimulations of the subthalamic nucleus (STN) are of advantage. In the present study, the main objective was to examined the effects of bilateral EPN-DBS at different frequencies (130 Hz, 40 Hz, 15 Hz) on the severity of dystonia in the dt mutant hamster.

View Article and Find Full Text PDF