Publications by authors named "Franz Kapplusch"

Deciphering signaling pathways that regulate the complex interplay between inflammation and cell death is a key challenge in understanding innate immune responses. Over recent years, receptor interacting protein (RIP) kinases have been described to regulate the interplay between inflammation and cell death. Whereas RIP1 and 3, the most well described members of the RIP kinase family, play important roles in necroptosis, RIP2's involvement in regulating inflammation, cell death processes and cancer is less well described and controversially discussed.

View Article and Find Full Text PDF

Effector CD4 T lymphocytes contribute to inflammation and tissue damage in psoriasis, but the underlying molecular mechanisms remain poorly understood. The transcription factor CREMα controls effector T cell function in people with systemic autoimmune diseases. The inhibitory surface coreceptor PD-1 plays a key role in the control of effector T cell function and its therapeutic inhibition in patients with cancer can cause psoriasis.

View Article and Find Full Text PDF

Effector CD4 T cells with increased IL-17A and reduced IL-2 production contribute to tissue inflammation and organ damage in systemic lupus erythematosus (SLE). Increased expression of the transcription factor cAMP response element modulator (CREM) α promotes altered cytokine expression in SLE. The aim of this study was to investigate CREMα-mediated events favoring effector CD4 T cells in health and disease.

View Article and Find Full Text PDF

CASP1 variants result in reduced enzymatic activity of procaspase-1 and impaired IL-1β release. Despite this, affected individuals can develop systemic autoinflammatory disease. These seemingly contradictory observations have only partially been explained by increased NF-κB activation through prolonged interaction of variant procaspase-1 with RIP2.

View Article and Find Full Text PDF

The genus Eimeria (Apicomplexa, Coccidia) provides a wide range of different species with different hosts to study common and variable features within the genus and its species. A common characteristic of all known Eimeria species is the oocyst, the infectious stage where its life cycle starts and ends. In our study, we utilized Eimeria nieschulzi as a model organism.

View Article and Find Full Text PDF

Purpose Of Review: Chronic non-bacterial osteomyelitis (CNO) with its most severe form chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory bone disorder. We summarize the clinical presentation, diagnostic approaches, most recent advances in understanding the pathophysiology, and available treatment options and outcomes in CNO/CRMO.

Recent Findings: Though the exact molecular pathophysiology of CNO/CRMO remains somewhat elusive, it appears likely that variable defects in the TLR4/MAPK/inflammasome signaling cascade result in an imbalance between pro- and anti-inflammatory cytokine expressions in monocytes from CNO/CRMO patients.

View Article and Find Full Text PDF

Chronic non-bacterial osteomyelitis (CNO) belongs to the growing spectrum of autoinflammatory diseases and primarily affects the skeletal system. Peak onset ranges between 7 and 12 years of age. The clinical spectrum of CNO covers sometimes asymptomatic inflammation of single bones at the one end and chronically active or recurrent multifocal osteitis at the other.

View Article and Find Full Text PDF

Caspase-1 is a key player during the initiation of pro-inflammatory innate immune responses, activating pro-IL-1β in so-called inflammasomes. A subset of patients with recurrent febrile episodes and systemic inflammation of unknown origin harbor mutations in CASP1 encoding caspase-1. CASP1 variants result in reduced enzymatic activity of caspase-1 and impaired IL-1β secretion.

View Article and Find Full Text PDF

Subcellular localization studies and life cell imaging approaches usually benefit from fusion-reporter proteins, such as enhanced green fluorescent protein (EGFP) and mCherry to the proteins of interest. However, such manipulations have several risks, including protein misfolding, altered protein shuttling, or functional impairment when compared to the wild-type proteins. Here, we demonstrate altered subcellular distribution and function of the pro-inflammatory enzyme procaspase-1 as a result of fusion with the reporter protein mCherry.

View Article and Find Full Text PDF

Background: For their application in the area of diagnosis and therapy, single-domain antibodies (sdAbs) offer multiple advantages over conventional antibodies and fragments thereof in terms of size, stability, solubility, immunogenicity, production costs as well as tumor uptake and blood clearance. Thus, sdAbs have been identified as valuable next-generation targeting moieties for molecular imaging and drug delivery in the past years. Since these probes are much less complex than conventional antibody fragments, bacterial expression represents a facile method in order to produce sdAbs in large amounts as soluble and functional proteins.

View Article and Find Full Text PDF