Publications by authors named "Franz J Baudenbacher"

Background: Enhancing venous return during cardiopulmonary resuscitation (CPR) can lead to better hemodynamics and improved outcome after cardiac arrest (CA). Peripheral Intravenous Analysis (PIVA) provides feedback on venous flow changes and may indicate an increase in venous return and cardiac output during CPR. We hypothesize PIVA can serve as an early indicator of increased venous return, preceding end-tidal CO (etCO) increase, before the return of spontaneous circulation (ROSC) in a rat model of CA and CPR.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness of peripheral intravenous waveform analysis (PIVA) in detecting small amounts of blood loss during surgery, specifically focusing on a 2% blood volume loss in rats.
  • Researchers monitored various cardiovascular indicators in male Sprague Dawley rats as blood was removed gradually, analyzing changes in the peripheral intravenous pressure waveform using MATLAB.
  • Results showed a significant decrease in the first fundamental frequency (F1) of the venous waveform after minimal blood loss, indicating that PIVA can be a sensitive tool for detecting early hemorrhage compared to other traditional methods.
View Article and Find Full Text PDF

Background: Peripheral intravenous analysis (PIVA) has been shown to be more sensitive than central venous pressure (CVP) for detecting hemorrhage and volume overload. We hypothesized that PIVA is superior to CVP for detecting right ventricular (RV) failure in a rat model of respiratory arrest.

Methods: Eight Wistar rats were studied in accordance with the ARRIVE guidelines.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome caused by gene mutations that render RYR2 Ca release channels hyperactive, provoking spontaneous Ca release and delayed afterdepolarizations (DADs). What remains unknown is the cellular source of ventricular arrhythmia triggered by DADs: Purkinje cells in the conduction system or ventricular cardiomyocytes in the working myocardium. To answer this question, we used a genetic approach in mice to knock out cardiac calsequestrin either in Purkinje cells or in ventricular cardiomyocytes.

View Article and Find Full Text PDF

Background: Assessing intravascular hypovolemia due to hemorrhage remains a clinical challenge. Central venous pressure (CVP) remains a commonly used monitor in surgical and intensive care settings for evaluating blood loss, despite well-described pitfalls of static pressure measurements. The authors investigated an alternative to CVP, intravenous waveform analysis (IVA) as a method for detecting blood loss and examined its correlation with echocardiography.

View Article and Find Full Text PDF

Unlabelled: Splanchnic venous pooling is a major hemodynamic determinant of orthostatic hypotension, but is not specifically targeted by pressor agents, the mainstay of treatment. We developed an automated inflatable abdominal binder that provides sustained servo-controlled venous compression (40 mm Hg) and can be activated only on standing. We tested the efficacy of this device against placebo and compared it to midodrine in 19 autonomic failure patients randomized to receive either placebo, midodrine (2.

View Article and Find Full Text PDF

Background: Unrecognized hemorrhage and unguided resuscitation is associated with increased perioperative morbidity and mortality. The authors investigated peripheral venous waveform analysis (PIVA) as a method for quantitating hemorrhage as well as iatrogenic fluid overload during resuscitation.

Methods: The authors conducted a prospective study on Yorkshire Pigs (n = 8) undergoing hemorrhage, autologous blood return, and administration of balanced crystalloid solution beyond euvolemia.

View Article and Find Full Text PDF

Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization.

View Article and Find Full Text PDF

Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model.

View Article and Find Full Text PDF

Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a major risk for ventricular arrhythmia. Pause-triggered ventricular arrhythmia can be caused by increased myofilament Ca binding due to sarcomeric mutations or Ca-sensitizing compounds. Myofilament Ca sensitivity is also increased after MI.

View Article and Find Full Text PDF

The human Ether-à-go-go-related gene (hERG)-encoded K(+) current, I(Kr) is essential for cardiac repolarization but is also a source of cardiotoxicity because unintended hERG inhibition by diverse pharmaceuticals can cause arrhythmias and sudden cardiac death. We hypothesized that a small molecule that diminishes I(Kr) block by a known hERG antagonist would constitute a first step toward preventing hERG-related arrhythmias and facilitating drug discovery. Using a high-throughput assay, we screened a library of compounds for agents that increase the IC(70) of dofetilide, a well characterized hERG blocker.

View Article and Find Full Text PDF

Rationale: Ca binding to the troponin complex represents a major portion of cytosolic Ca buffering. Troponin mutations that increase myofilament Ca sensitivity are associated with familial hypertrophic cardiomyopathy and confer a high risk for sudden death. In mice, Ca sensitization causes ventricular arrhythmias, but the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells.

View Article and Find Full Text PDF

Aortic valve (AV) disease is often characterized by the formation of calcific nodules within AV leaflets that alter functional biomechanics. In vitro, formation of these nodules is associated with osteogenic differentiation and/or increased contraction and apoptosis of AV interstitial cells (AVICs), leading to growth of calcium phosphate crystal structures. In several other cell types, increased intracellular Ca(2+) has been shown to be an important part in activation of osteogenic differentiability.

View Article and Find Full Text PDF

We studied the transmembrane potential and magnetic fields from electrical activity at the apex of the isolated rabbit heart experimentally using optical mapping and superconducting quantum interference device microscopy, and theoretically using monodomain and bidomain models. The cardiac apex has a complex spiral fiber architecture that plays an important role in the development and propagation of action currents during stimulation at the apex. This spiral fiber orientation contains both radial electric currents that contribute to the electrocardiogram and electrically silent circular currents that cannot be detected by the electrocardiogram but are detectable by their magnetic field, B(z).

View Article and Find Full Text PDF

In cardiac myocytes, the activity of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is hypothesized to regulate Ca(2+) release from and Ca(2+) uptake into the sarcoplasmic reticulum via the phosphorylation of the ryanodine receptor 2 and phospholamban (PLN), respectively. We tested the role of CaMKII and PLN on the frequency adaptation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients in nearly 500 isolated cardiac myocytes from transgenic mice chronically expressing a specific CaMKII inhibitor, interbred into wild-type or PLN null backgrounds under physiologically relevant pacing conditions (frequencies from 0.2 to 10 Hz and at 37 degrees C).

View Article and Find Full Text PDF

A microfabricated titration calorimeter having nanowatt sensitivity is presented. The device is achieved by modifying a commercial, suspended-membrane, thin-film thermopile infrared sensor. Chemical reactions are studied by placing a 50.

View Article and Find Full Text PDF

The metabolic activity of cells can be monitored by measuring the pH in the extracellular environment. Microfabrication and microfluidic technologies allow the sensor size and the extracellular volumes to be comparable to single cells. A glass substrate with thin film pH sensitive IrO( x ) electrodes was sealed to a replica-molded polydimethylsiloxane (PDMS) microfluidic network with integrated valves.

View Article and Find Full Text PDF

In this paper we describe a new approach to measure pH differences in microfluidic devices and demonstrated acidification rate measurements in on-chip cell culture systems with nl wells. We use two miniaturized identical iridium oxide (IrOx) thin film electrodes (20 micromx400 microm), one as a quasi-reference electrode, the other as a sensing electrode, placed in two confluent compartments on chip. The IrOx electrodes were deposited onto microfabricated platinum (Pt) electrodes simultaneously using electrodeposition.

View Article and Find Full Text PDF

Microsensors are valuable tools to monitor cell metabolism in cell culture volumes. The present research describes the fabrication and characterization of on-chip thin-film iridium oxide pH microsensors with dimensions of 20 microm x 20 microm and 20 microm x 40 microm suitable to be incorporated into nl volumes. IrOx thin films were formed on platinum microelectrodes by electrochemical deposition in galvanostatic mode.

View Article and Find Full Text PDF

A hybrid chip is described which combines a microfluidic network fabricated in a silicone elastomer (PDMS) with planar microelectrodes. It was used to measure extracellular potentials from single adult murine cardiac myocytes in a restricted extracellular space. The recorded variations in the extracellular potentials were caused by transmembrane currents associated with spontaneously initiated intracellular calcium waves.

View Article and Find Full Text PDF