Biopharmaceuticals, specifically antibody-based therapeutics, have revolutionized disease treatment. Throughout their lifecycle, these therapeutic proteins are exposed to several stress conditions, for example at interfaces, posing a risk to the drug product stability, safety and quality. Therapeutic protein adsorption at interfaces may lead to loss of active product and protein aggregation, with potential immunogenicity risks.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) encounter numerous interfaces during manufacturing, storage, and administration. While protein adsorption at the solid/liquid interface has been widely explored on model surfaces, a key challenge remains - the detection of very small amounts of adsorbed mAb directly on real medical surfaces. This study introduces a novel ELISA-based device, ELIBAG, a new tool for measuring mAb adsorption on medical bags.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2023
Functional amyloids are commonly produced by many microorganisms and their biological functions are numerous. Staphylococcus aureus can secrete a group of peptides named phenol-soluble modulins (PSMs) in their biofilm extracellular matrix. PSMs have been found inside biofilms both in their soluble form and assembled into amyloid structures.
View Article and Find Full Text PDFUpon BMP-2 stimulation, the osteoblastic lineage commitment in C2C12 myoblasts is associated with a microenvironmental change that occurs over several days. How does BMP-2 operate a switch in adhesive machinery to adapt to the new microenvironment and to drive bone cell fate is not well understood. Here, we addressed this question for BMP-2 delivered either in solution or physically bound of a biomimetic film, to mimic its presentation to cells the extracellular matrix (ECM).
View Article and Find Full Text PDFThe consequences of agitation on protein stability are particularly relevant to therapeutic proteins. However, the precise contribution of the different effects induced by agitation in pathways leading to protein denaturation and aggregation at interfaces is not entirely understood. In particular, the contribution of a moving triple line, induced by the sweeping of a solution meniscus on a container wall upon agitation, has only been rarely assessed.
View Article and Find Full Text PDFObjective: Monoclonal antibodies are in contact with many different materials throughout their life cycle from production to patient administration. Plastic surfaces are commonly found in single use bags, syringes, perfusion bags and tubing and their hydrophobic nature makes them particularly prone for adsorption of therapeutic proteins. The addition of surfactants in therapeutic formulations aims at minimizing surface and interface adsorption of the active molecules.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2021
Adsorption of therapeutic proteins to material surfaces can be a pivotal issue in drug development, especially for low concentration products. Surfactants are used to limit adsorption losses. For each formulation component, surface adsorption is the result of a combination of its diffusion and surface adsorption rates.
View Article and Find Full Text PDFThe main purpose of the work was to develop a drug releasing coatings on the surface of medical devices exposed to blood flow, what should enable effective inhibition of blood coagulation process. As a part of the work, the process of encapsulating the anticoagulant drug eptifibatide (EPT) in poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles was developed. EPT encapsulation efficiency was 29.
View Article and Find Full Text PDFPhagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens.
View Article and Find Full Text PDFInsulin is known to form amyloid aggregates when agitated in a hydrophobic container. Amyloid aggregation is routinely measured by the fluorescence of the conformational dye thioflavin T, which, when incorporated into amyloid fibers, fluoresces at 480 nm. The kinetics of amyloid aggregation in general is characterized by an initial lag-phase, during which aggregative nuclei form on the hydrophobic surface.
View Article and Find Full Text PDFAim: We present a fast magnetic immunoassay, combining magnetic nanoparticles and micromagnets. High magnetic field gradients from micromagnets are used to develop a new approach to the standard ELISA. Materials & methods/results: A proof-of-concept based on colorimetric quantification of antiovalbumin antibody in buffer is performed and compared with an ELISA.
View Article and Find Full Text PDFTherapeutic proteins are privileged in drug development because of their exquisite specificity, which is due to their three-dimensional conformation in solution. During their manufacture, storage, and delivery, interactions with material surfaces and air interfaces are known to affect their stability. The growing use of automated devices for handling and injection of therapeutics increases their exposure to protocols involving intermittent wetting, during which the solid-liquid and liquid-air interfaces meet at a triple contact line, which is often dynamic.
View Article and Find Full Text PDFDictyostelium discoideum is a widely used model to study molecular mechanisms controlling cell adhesion, cell spreading on a surface, and phagocytosis. In this study we isolated and characterize a new mutant created by insertion of a mutagenic vector in the heretofore uncharacterized spdA gene. SpdA-ins mutant cells produce an altered, slightly shortened version of the SpdA protein.
View Article and Find Full Text PDFSoluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces.
View Article and Find Full Text PDFSeveral chemokines are important in muscle myogenesis and in the recruitment of muscle precursors during muscle regeneration. Among these, the SDF-1α chemokine (CXCL12) is a potent chemoattractant known to be involved in muscle repair. SDF-1α was loaded in polyelectrolyte multilayer films made of poly(L-lysine) and hyaluronan to be delivered locally to myoblast cells in a matrix-bound manner.
View Article and Find Full Text PDFInteractions between proteins and material or cellular surfaces are able to trigger protein aggregation in vitro and in vivo. The human insulin peptide segment LVEALYL is able to accelerate insulin aggregation in the presence of hydrophobic surfaces. We show that this peptide needs to be previously adsorbed on a hydrophobic surface to induce insulin aggregation.
View Article and Find Full Text PDFThe formation of insulin amyloidal aggregates on material surfaces is a well-known phenomenon with important pharmaceutical and medical implications. Using surface plasmon resonance imaging, we monitor insulin adsorption on model hydrophobic surfaces in real time. Insulin adsorbs in two phases: first, a very fast phase (less than 1 min), where a protein monolayer forms, followed by a slower one that can last for at least 1h, where multilayered protein aggregates are present.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2012
We synthesized surfaces with different hydrophobicities and roughness by forming self-assembled monolayers (SAMs) of mixed amine and octyl silanes. Insulin aggregation kinetics in the presence of the above surfaces is characterized by a typical lag phase and growth rate. We show that the lag time but not the growth rate varies as a function of the amine fraction on the surface.
View Article and Find Full Text PDFBiocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti).
View Article and Find Full Text PDFCell arrays are of foremost importance for many applications in pharmaceutical research or fundamental biology. Although arraying techniques have been widely investigated for adherent cells, organization of cells in suspension has been rarely considered. The arraying of non-adherent cells using the diamagnetic repulsive force is presented.
View Article and Find Full Text PDFSynchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion.
View Article and Find Full Text PDFState-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance.
View Article and Find Full Text PDFNonaspanins are characterised by a large N-terminal extracellular domain and nine putative transmembrane domains. This evolutionarily conserved family comprises three members in Dictyostelium discoideum (Phg1A, Phg1B and Phg1C) and Drosophila melanogaster, and four in mammals (TM9SF1-TM9SF4), the function of which is essentially unknown. Genetic studies in Dictyostelium demonstrated that Phg1A is required for cell adhesion and phagocytosis.
View Article and Find Full Text PDFTo study reorganization of the actin system in cells that invert their polarity, we stimulated Dictyostelium cells by mechanical forces from alternating directions. The cells oriented in a fluid flow by establishing a protruding front directed against the flow and a retracting tail. Labels for polymerized actin and filamentous myosin-II marked front and tail.
View Article and Find Full Text PDF