Publications by authors named "Frantsuzov I"

Factors affecting the performance of H heteronuclear decoupling sequences for magic-angle spinning (MAS) NMR spectroscopy of organic solids are explored, as observed by time constants for the decay of nuclear magnetisation under a spin-echo (T2' ). By using a common protocol over a wide range of experimental conditions, including very high magnetic fields and very high radio-frequency (RF) nutation rates, decoupling performance is observed to degrade consistently with increasing magnetic field. Inhomogeneity of the RF field is found to have a significant impact on T2' values, with differences of about 20 % observed between probes with different coil geometries.

View Article and Find Full Text PDF

Although considerable progress has been made in simulating the dynamics of multiple coupled nuclear spins, predicting the evolution of nuclear magnetisation in the presence of radio-frequency decoupling remains challenging. We use exact numerical simulations of the spin dynamics under simultaneous magic-angle spinning and RF decoupling to determine the extent to which numerical simulations can be used to predict the experimental performance of heteronuclear decoupling for the CW, TPPM and XiX sequences, using the methylene group of glycine as a model system. The signal decay times are shown to be strongly dependent on the largest spin order simulated.

View Article and Find Full Text PDF

In this Letter, we present NMR spin-lattice and relaxometry data for proton transfer in one of the shortest known N-H⋯O hydrogen bonds in a single crystal of 3,5 pyridinedicarboxylic acid (35PDCA). It is widely believed that proton transfer by quantum tunneling does not occur in short hydrogen bonds since the ground state energy level lies above the potential barrier, yet these data show a temperature independent, proton tunneling rate below 77 K and a clear deviation from classical dynamics below 91 K. This study therefore suggests that proton tunneling occurs in all hydrogen bonds at low temperature and the crossover temperature to classical hopping must be determined when evaluating whether proton tunneling persists at higher temperature, for example in enzyme catalysis under physiological conditions.

View Article and Find Full Text PDF

Field-cycling (1)H NMR relaxometry has been used to measure the rate of concerted double proton transfer in the hydrogen bonds of (16)O and (18)O isotopologues of benzoic acid dimers. The experiments have been conducted in the solid state at low temperature 13.3 ≤ T ≤ 80 K where the dynamics are dominated by incoherent proton tunnelling.

View Article and Find Full Text PDF

Solid-state NMR is used to characterise dynamics in the ethanol solvate of the pharmaceutical material formoterol fumarate and its associated desolvate. Jump rates and activation barriers for dynamic processes such as phenyl ring rotation and methyl group rotational diffusion are derived from 1D-EXSY and (13)C spin-lattice relaxation times respectively. (2)H and (13)C spin-lattice relaxation times measured under magic-angle spinning conditions are used to show that the fumarate ion in the desolvate is undergoing small-amplitude motion on a frequency scale of 100s of MHz at ambient temperature with an activation parameter of about 32 kJ mol(-1).

View Article and Find Full Text PDF

A field-cycling NMR investigation of (1)H-(13)C polarisation transfer using cross-relaxation and the nuclear solid effect (NSE) is described. Dynamic nuclear polarisation (DNP) of the (13)C spins is observed when forbidden transitions are driven by r.f.

View Article and Find Full Text PDF