Publications by authors named "Frants Roager Lauritsen"

Rationale: The type and quantity of environmentally problematic disinfection byproducts (DBPs) produced during chlorination of water depend on the natural organic matter and organic contaminants that raw water contains, and on the operational conditions of the drinking water treatment process. There is a need for a fast and quantitative method that determines which DBPs are produced and monitors the chemical dynamics during a drinking water treatment.

Methods: A small experimental chemical reactor (50 mL) was mounted directly onto the membrane inlet interface of a membrane inlet mass spectrometer (MIMS).

View Article and Find Full Text PDF

Beer is a complex mix of more than 7700 compounds, around 800 of which are volatile. While GC-MS has been actively employed in the analysis of the volatome of beer, this method is challenged by the complex nature of the sample. Herein, we explored the possible of using membrane-inlet mass spectrometry (MIMS) coupled to KNIME to characterize local Danish beers.

View Article and Find Full Text PDF

A Membrane Introduction Mass Spectrometry (MIMS) method was developed to differentiate and quantify the different chlorinated and brominated-amines, present in drinking water during chloramination. The representative mass to charge ratios (m/z) of 53, 85, 97, 175 and 131 corresponding to the mass of the parent compounds were selected to monitor NHCl, NHCl, NHBr, NHBr and NHBrCl and the detection limits were found to be 0.034, 0.

View Article and Find Full Text PDF

Ionized acetates were used as model compounds to describe gas-phase behavior of oxygen containing compounds with respect to their formation of dimers in ion mobility spectrometry (IMS). The ions were created using corona discharge at atmospheric pressure and separated in a drift tube before analysis of the ions by mass spectrometry. At the ambient operational temperature and pressure used in our instrument, all acetates studied formed dimers.

View Article and Find Full Text PDF

Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model.

View Article and Find Full Text PDF