Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu.
View Article and Find Full Text PDFBackground & Aims: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib.
View Article and Find Full Text PDFRecently, the cytotoxic properties of galvanically coupled Ti-Mg particles have been shown in different cells. This cytotoxic effect has been attributed mainly to Mg due to its tendency to undergo activation when coupled with Ti, forming a galvanic cell consisting of an anode (Mg) and a cathode (Ti). However, the role of the Ti cathode has been ignored in explaining the cytotoxic effect of Ti-Mg particles due to its high resistance to corrosion.
View Article and Find Full Text PDF