Publications by authors named "Frantisek Marsik"

As was shown in the previous part of the study, windshields are an important part of the passive safety means of modern low-floor trams with an extraordinary effect on pedestrian safety in a pedestrian-tram collisions. Therefore, maximum attention must be paid to the definition of tram windshield characteristics. This article describes a windshield crash test, from which data are obtained to verify the feasibility of the applied computational approaches.

View Article and Find Full Text PDF

This article represents the first paper in a two-part series dealing with safety during tram-pedestrian collisions. This research is dedicated to the safety of trams for pedestrians during collisions and is motivated by the increased number of lethal cases. The first part of this paper includes an overview of tram face development from the earliest designs to the current ones in use and, at the same time, provides a synopsis and explanation of the technical context, including a link to current and forthcoming legislation.

View Article and Find Full Text PDF

Objective: The human motion system reacts to both hypo and hyperactivity loads by changes to the rheological properties of tissues. This study deals with changes to the axial system (AS) compartment. Using the appropriate methodologies and mathematical-physical methods, these changes can be identified and quantified.

View Article and Find Full Text PDF

Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier-Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive.

View Article and Find Full Text PDF

Bone remodelling is a fundamental biological process that controls bone microrepair, adaptation to environmental loads and calcium regulation among other important processes. It is not surprising that bone remodelling has been subject of intensive both experimental and theoretical research. In particular, many mathematical models have been developed in the last decades focusing in particular aspects of this complicated phenomenon where mechanics, biochemistry and cell processes strongly interact.

View Article and Find Full Text PDF

The aim of this article was to present a new thermodynamic-based model for bone remodeling which is able to predict the functional adaptation of bone in response to changes in both mechanical and biochemical environments. The model was based on chemical kinetics and irreversible thermodynamic principles, in which bone is considered as a self-organizing system that exchanges matter, energy and entropy with its surroundings. The governing equations of the mathematical model have been numerically solved using Matlab software and implemented in ANSYS software using the Finite Element Method.

View Article and Find Full Text PDF

This paper offers a theoretical explanation of the coupling effect phenomenon between mechanical loading and chemical reactions based on linear nonequilibrium thermodynamics and also discusses the classical method of obtaining restrictions on the phenomenological coefficients. The question whether static or dynamic loading influences biochemical processes is addressed-the necessity of dynamic loading as a stimulatory mechanism is shown. Further, the presented paper suggests that chemical and mechanical processes do not only facilitate or support one another but they may also play a triggering role for the other coupled process-some biochemical processes may need mechanical stimulation to run and vice versa as well-chemical reactions may provide energy for some mechanical processes.

View Article and Find Full Text PDF

This research is aimed to the determination of the changes in the cardiac energetic output for three different modes of cardiac rhythm pacing. The clinical investigation of thirteen patients with the permanent dual-chamber pacemaker implantation was carried out. The patients were taken to echocardiography examination conducted by way of three pacing modes (AAI, VVI and DDD).

View Article and Find Full Text PDF

Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation.

View Article and Find Full Text PDF