The observational difficulties and the complexity of earthquake physics have rendered seismic hazard assessment largely empirical. Despite increasingly high-quality geodetic, seismic and field observations, data-driven earthquake imaging yields stark differences and physics-based models explaining all observed dynamic complexities are elusive. Here we present data-assimilated three-dimensional dynamic rupture models of California's biggest earthquakes in more than 20 years: the moment magnitude (M) 6.
View Article and Find Full Text PDFTransient fault slip spans time scales from tens of seconds of earthquake rupture to years of aseismic afterslip. So far, seismic and geodetic recordings of these two phenomena have primarily been studied separately and mostly with a focus on kinematic aspects, which limits our physical understanding of the interplay between seismic and aseismic slip. Here, we use a Bayesian dynamic source inversion method, based on laboratory-derived friction laws, to constrain fault stress and friction properties by joint quantitative modeling of coseismic and postseismic observations.
View Article and Find Full Text PDF