The aim of the study was to develop an orthopedic implant coating in the form of vancomycin-loaded collagen/hydroxyapatite layers (COLHA+V) that combine the ability to prevent bone infection with the ability to promote enhanced osseointegration. The ability to prevent bone infection was investigated employing a rat model that simulated the clinically relevant implant-related introduction of bacterial contamination to the bone during a surgical procedure using a clinical isolate of . The ability to enhance osseointegration was investigated employing a model of a minipig with terminated growth.
View Article and Find Full Text PDFA composite nanofibrous layer containing collagen and hydroxyapatite was deposited on selected surface areas of titanium acetabular cups. The layer was deposited on the irregular surface of these 3D objects using a specially developed electrospinning system designed to ensure the stability of the spinning process and to produce a layer approximately 100 micrometers thick with an adequate thickness uniformity. It was verified that the layer had the intended nanostructured morphology throughout its entire thickness and that the prepared layer sufficiently adhered to the smooth surface of the model titanium implants even after all the post-deposition sterilization and stabilization treatments were performed.
View Article and Find Full Text PDFThe aim of this study was to develop a biodegradable nanostructured electrospun layer based on collagen (COL), hydroxyapatite nanoparticles (HA), vancomycin hydrochloride (V), gentamicin sulphate (G) and their combination (VG) for the treatment of prosthetic joint infections and the prevention of infection during the joint replacement procedure. COL/HA layers containing different amounts of HA (0, 5 and 15 wt%) were tested for the in vitro release kinetics of antibiotics, antimicrobial activity against MRSA, gentamicin-resistant Staphylococcus epidermidis and Enterococcus faecalis isolates and cytocompatibility using SAOS-2 bone-like cells. The results revealed that the COL/HA layers released high concentrations of vancomycin and gentamicin for 21 days and performed effectively against the tested clinically-relevant bacterial isolates.
View Article and Find Full Text PDFThe aim of this study was to develop an osteo-inductive resorbable layer allowing the controlled elution of antibiotics to be used as a bone/implant bioactive interface particularly in the case of prosthetic joint infections, or as a preventative procedure with respect to primary joint replacement at a potentially infected site. An evaluation was performed of the vancomycin release kinetics, antimicrobial efficiency and cytocompatibility of collagen/hydroxyapatite layers containing vancomycin prepared employing different hydroxyapatite concentrations. Collagen layers with various levels of porosity and structure were prepared using three different methods: by means of the lyophilisation and electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite and 10wt% of vancomycin, and by means of the electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite followed by impregnation with 10wt% of vancomycin.
View Article and Find Full Text PDFInfections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%).
View Article and Find Full Text PDF