Neuro- and retinal degenerative diseases rob millions of aging individuals of their independence. Researching these diseases in human tissue has been hindered by the immediate loss of electric activity in neurons after the circulation ceases. Recent studies indicate that limited neuronal activity can be revived postmortem, even in the retina.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2024
Objective: The isolated mammalian retina may serve as a sensitive biosensor for preclinical drug testing, including eye drugs and a broader range of pharmaceuticals. To facilitate testing with minimal amounts of drug molecules or nanostructures, we developed a closed-perfusion transretinal electroretinography (tERG) setup.
Methods: The major challenge with small amounts of circulating perfusate was maintaining retinal viability and stability during long experiments.
The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina.
View Article and Find Full Text PDFModeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma.
View Article and Find Full Text PDFMeasurements of retinal neuronal light responses are critical to investigating the physiology of the healthy retina, determining pathological changes in retinal diseases, and testing therapeutic interventions. The ex vivo electroretinogram (ERG) allows the quantification of contributions from individual cell types in the isolated retina by addition of specific pharmacological agents and evaluation of tissue-intrinsic changes independently of systemic influences. Retinal light responses can be measured using a specialized ex vivo ERG specimen holder and recording setup, modified from existing patch clamp or microelectrode array equipment.
View Article and Find Full Text PDFDeath is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases, impeding their potential for transplantation.
View Article and Find Full Text PDFThe elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein-coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein-coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear.
View Article and Find Full Text PDFSensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us.
View Article and Find Full Text PDFBased on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently.
View Article and Find Full Text PDFRods and cones use intracellular Ca to regulate many functions, including phototransduction and neurotransmission. The Mitochondrial Calcium Uniporter (MCU) complex is thought to be the primary pathway for Ca entry into mitochondria in eukaryotes. We investigate the hypothesis that mitochondrial Ca uptake via MCU influences phototransduction and energy metabolism in photoreceptors using a mcu zebrafish and a rod photoreceptor-specific Mcu mouse.
View Article and Find Full Text PDFNeuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision.
View Article and Find Full Text PDFBMJ Open Diabetes Res Care
August 2020
Introduction: Diabetic retinopathy is a major complication of diabetes recently associated with compromised photoreceptor function. Multiple stressors in diabetes, such as hyperglycemia, oxidative stress and inflammatory factors, have been identified, but systemic effects of diabetes on outer retina function are incompletely understood. We assessed photoreceptor physiology in vivo and in isolated retinas to better understand how alterations in the cellular environment compared with intrinsic cellular/molecular properties of the photoreceptors, affect light signal transduction and transmission in the retina in chronic type 2 diabetes.
View Article and Find Full Text PDFIntrinsically photosensitive retinal ganglion cells (ipRGCs) are a subset of cells that participate in image-forming and non-image-forming visual responses. Although both functional and morphological subtypes of ipRGCs have been described in rodents, parallel functional subtypes have not been identified in primate or human retinas. In this study, we used a human organ donor preparation method to measure human ipRGCs' photoresponses.
View Article and Find Full Text PDFTwo-photon vision arises from the perception of pulsed infrared (IR) laser light as color corresponding to approximately half of the laser wavelength. The physical process responsible for two-photon vision in rods has been delineated and verified experimentally only recently. Here, we sought to determine whether IR light can also be perceived by mammalian cone photoreceptors via a similar activation mechanism.
View Article and Find Full Text PDFPhotoreceptors are specialized neurons that rely on Ca to regulate phototransduction and neurotransmission. Photoreceptor dysfunction and degeneration occur when intracellular Ca homeostasis is disrupted. Ca homeostasis is maintained partly by mitochondrial Ca uptake through the mitochondrial Ca uniporter (MCU), which can influence cytosolic Ca signals, stimulate energy production, and trigger apoptosis.
View Article and Find Full Text PDFThe classic concept that GPCRs function as monomers has been challenged by the emerging evidence of GPCR dimerization and oligomerization. Rhodopsin (Rh) is the only GPCR whose native oligomeric arrangement was revealed by atomic force microscopy demonstrating that Rh exists as a dimer. However, the role of Rh dimerization in retinal physiology is currently unknown.
View Article and Find Full Text PDFVision is mediated by two types of photoreceptors: rods, enabling vision in dim light; and cones, which function in bright light. Despite many similarities in the components of their respective phototransduction cascades, rods and cones have distinct sensitivity, response kinetics, and adaptation capacity. Cones are less sensitive and have faster responses than rods.
View Article and Find Full Text PDFProg Retin Eye Res
November 2018
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors.
View Article and Find Full Text PDFLight adaptation of photoreceptor cells is mediated by Ca-dependent mechanisms. In darkness, Ca influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca extrusion via Na/Ca, K exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca levels in photoreceptor outer segment because of continuing Ca extrusion by NCKXs.
View Article and Find Full Text PDFCalcium (Ca) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood.
View Article and Find Full Text PDFCalcium ions (Ca(2+)) modulate the phototransduction cascade of vertebrate cone photoreceptors to tune gain, inactivation, and light adaptation. In darkness, the continuous current entering the cone outer segment through cGMP-gated (CNG) channels is carried in part by Ca(2+), which is then extruded back to the extracellular space. The mechanism of Ca(2+) extrusion from mammalian cones is not understood.
View Article and Find Full Text PDFSensory cells adjust their sensitivity to incoming signals, such as odor or light, in response to changes in background stimulation, thereby extending the range over which they operate. For instance, rod photoreceptors are extremely sensitive in darkness, so that they are able to detect individual photons, but remain responsive to visual stimuli under conditions of bright ambient light, which would be expected to saturate their response given the high gain of the rod transduction cascade in darkness. These photoreceptors regulate their sensitivity to light rapidly and reversibly in response to changes in ambient illumination, thereby avoiding saturation.
View Article and Find Full Text PDFCones comprise only a small portion of the photoreceptors in mammalian retinas. However, cones are vital for color vision and visual perception, and their loss severely diminishes the quality of life for patients with retinal degenerative diseases. Cones function in bright light and have higher demand for energy than rods; yet, the mechanisms that support the energy requirements of cones are poorly understood.
View Article and Find Full Text PDFMutations that affect calcium homeostasis (Ca(2+)) in rod photoreceptors are linked to retinal degeneration and visual disorders such as retinitis pigmentosa and congenital stationary night blindness (CSNB). It is thought that the concentration of Ca(2+) in rod outer segments is controlled by a dynamic balance between influx via cGMP-gated (CNG) channels and extrusion via Na(+)/Ca(2+), K(+) exchangers (NCKX1). The extrusion-driven lowering of rod [Ca(2+)]i following light exposure controls their light adaptation and response termination.
View Article and Find Full Text PDFAn In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans.
View Article and Find Full Text PDF