Publications by authors named "Frans Spiering"

We present far infrared spectra of the conformer A of tryptamine in the 200 to 500 cm wavenumber range along with resonant photoionization spectra of the far-infrared excited conformer A of tryptamine. We show that single-far-infrared photon excited tryptamine has highly structured resonance enhanced multi-photon ionization spectra, revealing the mode composition of the S-state. Upon multiple-far-infrared photon absorption, the resonance enhanced multi-photon ionization spectrum broadens allowing ion gain spectroscopy to be performed.

View Article and Find Full Text PDF

The rotationally resolved magnetic dipole absorption spectrum of the oxygen A-band b(1)Σ(g)(+)(v=0) <- X(3)Σ(g)(-)(v=0) perturbed by collisions with helium was studied theoretically using the impact approximation. To calculate the relaxation matrix, scattering calculations were performed on a newly computed helium-oxygen (b(1)Σ(g)(+)) interaction potential as well as on a helium-oxygen (X(3)Σ(g)(-)) interaction potential from the literature. The calculated integrated line cross sections and broadening coefficients are in good agreement with experimental results from the literature.

View Article and Find Full Text PDF

Using cavity ring-down spectroscopy we measured the collision induced absorption spectrum associated with the a(1)Δ(v = 2) ←X(3)Σ(g)(-)(v = 0) band of oxygen near 922 nm both in pure oxygen and in mixtures of oxygen and nitrogen. For pure oxygen, we report for this band an integrated absorption of (1.56 - 0.

View Article and Find Full Text PDF

We have determined the collision-induced absorption (CIA) spectrum in the O(2) B-band in pure oxygen. We present absolute extinction coefficients of the minimums in between rotational lines using cavity ring-down spectroscopy. The measured extinction is corrected for the B-band magnetic dipole absorption using a model which includes line-mixing.

View Article and Find Full Text PDF

This paper reports on the absorption of molecular oxygen in the region of the A-band near 760 nm under atmospheric conditions relevant for satellite retrieval studies. We use pulsed laser cavity ring-down spectroscopy with a narrow bandwidth laser and use pressure scans to increase the accuracy of the measured oxygen extinction coefficients. Absolute binary absorption coefficients in minima between absorption lines of the A-band spectrum have been measured and tabulated.

View Article and Find Full Text PDF