Publications by authors named "Frans Maas"

Allogeneic stem cell transplantation (allo-SCT) can be a curative treatment for patients with a hematologic malignancy due to alloreactive T cell responses recognizing minor histocompatibility antigens (MiHA). Yet tumor immune escape mechanisms can cause failure of T cell immunity, leading to relapse. Tumor cells display low expression of costimulatory molecules and can up-regulate coinhibitory molecules that inhibit T cell functionality on ligation with their counter-receptors on the tumor-reactive T cells.

View Article and Find Full Text PDF

Combining natural killer (NK) cell adoptive transfer with hypomethylating agents (HMAs) is an attractive therapeutic approach for patients with acute myeloid leukemia (AML). However, data regarding the impact of HMAs on NK cell functionality are mostly derived from in vitro studies with high nonclinical relevant drug concentrations. In the present study, we report a comparative study of azacitidine (AZA) and decitabine (DAC) in combination with allogeneic NK cells generated from CD34 hematopoietic stem and progenitor cells (HSPC-NK cells) in in vitro and in vivo AML models.

View Article and Find Full Text PDF
Article Synopsis
  • Older acute myeloid leukemia (AML) patients have a poor prognosis, prompting the need for innovative therapies like allogeneic natural killer (NK) cell treatment.
  • A first-in-human study involved ten older AML patients receiving a unique NK cell product derived from umbilical cord blood, showing promising activation and low T and B cell contamination.
  • Results indicated that HSPC-NK cells were well tolerated, showed signs of persistence and maturation in the body, and two of four patients with minimal residual disease achieved significant remission, suggesting this approach could be a viable immunotherapy option for AML.
View Article and Find Full Text PDF

Early natural killer (NK)-cell repopulation after allogeneic stem cell transplantation (allo-SCT) has been associated with reduced relapse rates without an increased risk of graft-versus-host disease, indicating that donor NK cells have specific antileukemic activity. Therefore, adoptive transfer of donor NK cells is an attractive strategy to reduce relapse rates after allo-SCT. Since NK cells of donor origin will not be rejected, multiple NK-cell infusions could be administered in this setting.

View Article and Find Full Text PDF

Effective T-cell therapy against cancer is dependent on the formation of long-lived, stem cell-like T cells with the ability to self-renew and differentiate into potent effector cells. Here, we investigated the in vivo existence of stem cell-like antigen-specific T cells in allogeneic stem cell transplantation (allo-SCT) patients and their ex vivo generation for additive treatment posttransplant. Early after allo-SCT, CD8+ stem cell memory T cells targeting minor histocompatibility antigens (MiHAs) expressed by recipient tumor cells were not detectable, emphasizing the need for improved additive MiHA-specific T-cell therapy.

View Article and Find Full Text PDF

The introduction of autologous stem cell transplantation (SCT) and novel drugs has improved overall survival in multiple myeloma (MM) patients. However, minimal residual disease (MRD) remains and most patients eventually relapse. Myeloma plasma cells express tumor-associated antigens (TAA), which are interesting targets for immunotherapy.

View Article and Find Full Text PDF

Relapse and graft-versus-host disease remain major problems associated with allogeneic bone marrow (BM) transplantation (allo-BMT) and posttransplantation therapy in patients with multiple myeloma (MM) and other hematologic malignancies. A possible strategy for selectively enhancing the graft-versus-myeloma response and possibly reducing graft-versus-host disease is to increase the migration of alloreactive T cells toward the MM-containing BM. In the present study, we characterized the BM-homing behavior of donor-derived effector T cells in a novel allo-BMT model for the treatment of MM.

View Article and Find Full Text PDF

Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity.

View Article and Find Full Text PDF

Tumor relapses remain a serious problem after allogeneic stem cell transplantation (alloSCT), despite the long-term persistence of minor histocompatibility antigen (MiHA)-specific memory CD8(+) T cells specific for the tumor. We hypothesized that these memory T cells may lose their function over time in transplanted patients. Here, we offer functional and mechanistic support for this hypothesis, based on immune inhibition by programmed death-1 (PD-1) expressed on MiHA-specific CD8(+) T cells and the associated role of the PD-1 ligand PD-L1 on myeloid leukemia cells, especially under inflammatory conditions.

View Article and Find Full Text PDF

Tumor relapse after human leukocyte antigen-matched allogeneic stem cell transplantation (SCT) remains a serious problem, despite the long-term presence of minor histocompatibility antigen (MiHA)-specific memory T cells. Dendritic cell (DC)-based vaccination boosting MiHA-specific T-cell immunity is an appealing strategy to prevent or counteract tumor recurrence, but improvement is necessary to increase the clinical benefit. Here, we investigated whether knockdown of programmed death ligand 1 (PD-L1) and PD-L2 on monocyte-derived DCs results in improved T-cell activation.

View Article and Find Full Text PDF

Allogeneic stem cell transplantation (SCT) in multiple myeloma (MM) may induce a curative graft-versus-myeloma (GVM) effect. Major drawback in unmanipulated reduced-intensity conditioning (RIC) SCT is the risk of severe and longstanding graft-versus-host-disease (GVHD). This study demonstrates that transplantation with a partial T cell-depleted graft creates a platform for boosting GVM immunity by preemptive donor lymphocyte infusion (DLI) and recipient dendritic cell (DC) vaccination, with limited GVHD.

View Article and Find Full Text PDF

CD8(+) T cells recognizing minor histocompatibility antigens (MiHAs) on leukemic stem and progenitor cells play a pivotal role in effective graft-versus-leukemia reactivity after allogeneic stem cell transplantation (SCT). Previously, we identified a hematopoiesis-restricted MiHA, designated LRH-1, which is presented by HLA-B7 and encoded by the P2X5 purinergic receptor gene. We found that P2X5 is significantly expressed in CD34(+) leukemic subpopulations from chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) patients.

View Article and Find Full Text PDF

Minor histocompatibility antigens (mHAgs) constitute the targets of the graft-versus-leukemia response after HLA-identical allogeneic stem cell transplantation. Here, we have used genetic linkage analysis to identify a novel mHAg, designated lymphoid-restricted histocompatibility antigen-1 (LRH-1), which is encoded by the P2X5 gene and elicited an allogeneic CTL response in a patient with chronic myeloid leukemia after donor lymphocyte infusion. We demonstrate that immunogenicity for LRH-1 is due to differential protein expression in recipient and donor cells as a consequence of a homozygous frameshift polymorphism in the donor.

View Article and Find Full Text PDF

Minor histocompatibility antigens can induce cytotoxic T cells that play an important role in the graft-versus-leukemia and graft-versus-host-disease (GvHD) activity after stem cell transplantation. Minor histocompatibility antigens (mHags) with expression limited to the hematopoietic system may have a prominent role in the graft-versus-leukemia reaction. Earlier in vitro studies demonstrated that cytotoxic T cells specific for the minor histocompatibility antigen HA-1 only lysed cells of hematopoietic origin.

View Article and Find Full Text PDF

Human minor histocompatibility antigens (mHag) are target antigens of the graft-versus-leukemia response observed after allogeneic HLA-identical stem cell transplantation. We previously defined the molecular nature of the B cell lineage-specific mHag HB-1. The CTL epitope was identified as the decamer peptide EEKRGSLHVW presented in the context of HLA-B44.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkam85882jj9ihpl1r0pa866cp19e7641): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once