Publications by authors named "Frans Krens"

One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. -coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant.

View Article and Find Full Text PDF

Rose morphological traits such as prickles or petal number are influenced by a few key QTL which were detected across different growing environments-necessary for genomics-assisted selection in non-target environments. Rose, one of the world's most-loved and commercially important ornamental plants, is predominantly tetraploid, possessing four rather than two copies of each chromosome. This condition complicates genetic analysis, and so the majority of previous genetic studies in rose have been performed at the diploid level.

View Article and Find Full Text PDF

It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids.

View Article and Find Full Text PDF

High relative air humidity (RH≥85%) during growth disturbs stomatal functioning, resulting in excessive water loss in conditions of high evaporative demand. We investigated the expression of nine abscisic acid (ABA)-related genes (involved in ABA biosynthesis, oxidation and conjugation) and two non-ABA related genes (involved in the water stress response) aiming to better understand the mechanisms underlying contrasting stomatal functioning in plants grown at high RH. Four rose genotypes with contrasting sensitivity to high RH (one sensitive, one tolerant and two intermediate) were grown at moderate (62±3%) or high (89±4%) RH.

View Article and Find Full Text PDF

Poor adventitious root (AR) formation is a major obstacle in micropropagation and conventional vegetative propagation of many crops. It is affected by many endogenous and exogenous factors. With respect to endogenous factors, the phase change from juvenile to adult has a major influence on AR formation and rooting is usually much reduced or even fully inhibited in adult tissues.

View Article and Find Full Text PDF

The success of cut rose cultivars is a direct result of their aesthetic value. The rose industry thrives on novelty, and the production of novel flower color has been extensively studied. The most popular color is red, and it is, therefore, important for breeders to produce a good red cultivar.

View Article and Find Full Text PDF

Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance.

View Article and Find Full Text PDF

The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic.

View Article and Find Full Text PDF
Article Synopsis
  • Two innovative methods for creating cisgenic apples were developed, focusing on integrating desirable traits without foreign marker genes.
  • The first method involved the incorporation of the MdMYB10 gene to produce red-fleshed apples, confirmed through flowering and successful pollination.
  • The second method utilized a marker-free approach by introducing the scab resistance gene Rvi6 and employing a recombinase system, resulting in resilient apple lines free from selection markers and immune to scab symptoms.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a large SNP array for roses by analyzing RNA-Seq data from diverse rose types, generating about 700 million reads from tetraploid and diploid varieties.* -
  • They identified 68,893 SNPs from tetraploid roses to build a genotyping array, which will aid genetic mapping and breeding studies.* -
  • Additionally, an orthology-guided assembly established a non-redundant rose transcriptome database, linking 21,740 transcripts to the strawberry genome, enhancing genetic resources for the Rosaceae family.*
View Article and Find Full Text PDF

Background: Global trade has ensured that the ornamental horticulture continues to grow worldwide, with rose hybrids being the most economically important genus (Rosa x hybrida). Due to changes in global trade and an increase in energy costs the ornamental industry has seen a shift in the production and sale of flowers from the US and Europe alone to production in Africa and Latin America. As Kenya is a major exporter of roses to Europe we studied the genetic variation and heritability of specific morphological traits in a tetraploid population grown in the Netherlands and in Kenya.

View Article and Find Full Text PDF

Crambe abyssinica is a hexaploid oil crop for industrial applications. An increase of erucic acid (C22:1) and reduction of polyunsaturated fatty acid (PUFA) contents in crambe oil is a valuable improvement. An increase in oleic acid (C18:1), a reduction in PUFA and possibly an increase in C22:1 can be obtained by down-regulating the expression of fatty acid desaturase2 genes (CaFAD2), which code for the enzyme that converts C18:1 into C18:2.

View Article and Find Full Text PDF

Background: Crambe abyssinica (crambe) is a non-food oil seed crop. Its seed oil is widely used in the chemical industry because of the high erucic acid content. Furthermore, it is a potential platform for various feedstock oils for industrial uses based on genetic modification.

View Article and Find Full Text PDF

The physiological disorder hyperhydricity occurs frequently in tissue culture and causes several morphological abnormalities such as thick, brittle, curled, and translucent leaves. It is well known that hyperhydric shoots are characterized by a high water content, but how this is related to the abnormalities is not clear. It was observed that water accumulated extensively in the apoplast of leaves of hyperhydric Arabidopsis seedlings and flooded apoplastic air spaces almost completely.

View Article and Find Full Text PDF

Background: Crambe abyssinica produces high erucic acid (C22:1, 55-60%) in the seed oil, which can be further increased by reduction of polyunsaturated fatty acid (PUFA) levels. The omega-6 fatty acid desaturase enzyme (FAD2) is known to be involved in PUFA biosynthesis. In crambe, three CaFAD2 genes, CaFAD2-C1, CaFAD2-C2 and CaFAD2-C3 are expressed.

View Article and Find Full Text PDF

Apple scab resistance genes, HcrVf1 and HcrVf2, were isolated including their native promoter, coding and terminator sequences. Two fragment lengths (short and long) of the native gene promoters and the strong apple rubisco gene promoter (P(MdRbc)) were used for both HcrVf genes to test their effect on expression and phenotype. The scab susceptible cultivar 'Gala' was used for plant transformations and after selection of transformants, they were micrografted onto apple seedling rootstocks for scab disease tests.

View Article and Find Full Text PDF

Introduction of sustainable scab resistance in elite apple cultivars is of high importance for apple cultivation when aiming at reducing the use of chemical crop protectants. Genetic modification (GM) allows the rapid introduction of resistance genes directly into high quality apple cultivars. Resistance genes can be derived from apple itself but genetic modification also opens up the possibility to use other, non-host resistance genes.

View Article and Find Full Text PDF

Public concerns about the issue of the environmental safety of genetically modified plants have led to a demand for technologies allowing the production of transgenic plants without selectable (antibiotic resistance) markers. We describe the development of an effective transformation system for generating such marker-free transgenic plants, without the need for repeated transformation or sexual crossing. This system combines an inducible site-specific recombinase for the precise elimination of undesired, introduced DNA sequences with a bifunctional selectable marker gene used for the initial positive selection of transgenic tissue and subsequent negative selection for fully marker-free plants.

View Article and Find Full Text PDF

A complex mixture of hundreds of substances determines strawberry (Fragaria x ananassa) aroma, but only approximately 15 volatiles are considered as key flavour compounds. Of these, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is regarded as the most important, but it is methylated further by FaOMT (Fragaria x ananassa O-methyltransferase) to 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) during the ripening process. It is shown here that transformation of strawberry with the FaOMT sequence in sense and antisense orientation, under the control of the cauliflower mosaic virus 35S promoter, resulted in a near total loss of DMMF, whereas the levels of the other volatiles remained unchanged.

View Article and Find Full Text PDF

An octaploid (Fragaria x ananassa cv. Calypso) genotype of strawberry was transformed with an antisense chalcone synthase (CHS) gene construct using a ripening related CHS cDNA from Fragaria x ananassa cv. Elsanta under the control of the constitutive CaMV 35S promoter via Agrobacterium tumefaciens.

View Article and Find Full Text PDF

Agrobacterium-mediated genetic transformation was applied to produce beet armyworm (Spodoptera exigua Hübner) resistant tropical shallots (Allium cepa L. group Aggregatum). A cry1Ca or a H04 hybrid gene from Bacillus thuringiensis, driven by the chrysanthemum ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (Rubisco SSU) promoter, along with the hygromycin phosphotransferase gene (hpt) driven by the CaMV 35S promoter, was employed for genetic transformation.

View Article and Find Full Text PDF

Background: Apple allergy is dominated by IgE antibodies against Mal d 1 in areas where birch pollen is endemic. Apples with significantly decreased levels of Mal d 1 would allow most patients in these areas to eat apples without allergic reactions.

Objective: The aim of this study was to inhibit the expression of Mal d 1 in apple plants by RNA interference.

View Article and Find Full Text PDF