Purpose: To describe the phenotype of a novel Wolframin (WFS1) mutation in a family with autosomal dominant optic neuropathy and deafness. The study is designed as a retrospective observational case series.
Methods: Seven members of a Dutch family underwent ophthalmological, otological, and genetical examinations in one institution.
To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder.Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing.
View Article and Find Full Text PDFFeingold syndrome (FS) is the most frequent cause of familial syndromic gastrointestinal atresia and follows autosomal dominant inheritance. FS is caused by germline mutations in or deletions of the MYCN gene. Previously, 12 different heterozygous MYCN mutations and two deletions containing multiple genes including MYCN were described.
View Article and Find Full Text PDFObjective: The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the "MEGS capacity." Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
April 2008
In this study, we attempted to confirm genetic linkage to developmental dyslexia and reading-related quantitative traits of loci that have been shown to be associated with dyslexia in previous studies. In our sample of 108 Dutch nuclear families, the categorical trait showed strongest linkage to 1p36 (NPL-LOD = 2.1).
View Article and Find Full Text PDFTyrosine hydroxylase (TH) deficiency (OMIM 191290) is one cause of early-onset dopa-responsive dystonia. We describe seven cases from five unrelated families with dopa-responsive dystonia and low homovanillic acid in cerebrospinal fluid who were suspected to suffer from TH deficiency. Analysis of part of the TH promotor showed five homozygous and two heterozygous mutations in the highly conserved cyclic adenosine monophosphate response element.
View Article and Find Full Text PDFThe Wolf-Hirschhorn syndrome (WHS (MIM 194190)), which is characterized by growth delay, mental retardation, epilepsy, facial dysmorphisms, and midline fusion defects, shows extensive phenotypic variability. Several of the proposed mutational and epigenetic mechanisms in this and other chromosomal deletion syndromes fail to explain the observed phenotypic variability. To explain the complex phenotype of a patient with WHS and features reminiscent of Wolfram syndrome (WFS (MIM 222300)), we performed extensive clinical evaluation and classical and molecular cytogenetic (GTG banding, FISH and array-CGH) and WFS1 gene mutation analyses.
View Article and Find Full Text PDFThe characteristic clinical presentation, especially the appearance of muscle symptoms, is quite unique in children carrying the mtA8344G mutation. The diagnosis of MERRF syndrome is seldom made in the pediatric age. Fatigue is a common finding in children of pubertal age.
View Article and Find Full Text PDFThe m.13513G > A transition in the mitochondrial gene encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) and has been reported to be a frequent cause of Leigh syndrome (LS). We determined the frequency of the mutation in a cohort of 123 patients with reduced complex I activity in muscle (n = 113) or fibroblast (n = 10) tissue.
View Article and Find Full Text PDFJ Child Neurol
June 2006
The mitochondrial oxidative phosphorylation system is composed of five multiprotein complexes. The fourth complex of this system, cytochrome c oxidase (complex IV), consists of 13 subunits: 3 encoded by mitochondrial DNA and 10 encoded by the nuclear genome. Patients with an isolated complex IV deficiency frequently harbor mutations in nuclear genes encoding for proteins necessary for the assembly of the complex.
View Article and Find Full Text PDFWe retrospectively analyzed the clinical, histological, and biochemical data of 11 children, five of which carried the maternally-inherited mitochondrial T8993C and six carrying the T8993G point mutations in the ATP synthase 6 gene. The percentage of heteroplasmy was 95% or higher in muscle and in blood. All patients had an early clinical presentation with muscle hypotonia, severe extrapyramidal dysfunction and Leigh disease demonstrated by the cranial MRI.
View Article and Find Full Text PDFBrooks, Wisniewski, and Brown described a familial presentation of severe developmental retardation, speech delay, static encephalopathy with atrophic hydrocephalus, microcephaly, progressive spastic diplegia, a characteristic facial appearance, optic atrophy, and growth retardation associated with hypoplastic corpus callosum in one of the patients. The authors postulated a distinct X-linked mental retardation syndrome. Later on a similar phenotype was observed in three male siblings with an early lethal outcome.
View Article and Find Full Text PDFNeural tube defects (NTD) are congenital malformations arising from incomplete neural tube closure during early embryogenesis. Most NTD in humans show complex inheritance patterns, with both genetic and environmental factors involved in the etiology of this malformation. More than 120 mouse models for human NTD exist.
View Article and Find Full Text PDFLinkage studies have identified the inflammatory bowel disease (IBD)1 locus on chromosome 16 and the IBD2 locus on chromosome 12 to be involved in Crohn's disease. NOD2/CARD15 was identified as the gene of interest within the IBD1 region. However, linkage to this region could not be explained by NOD2/CARD15 alone.
View Article and Find Full Text PDFNail-patella syndrome is an autosomal dominant disorder characterized by dyplasia of finger nails, skeletal anomalies, and, frequently, renal disease. It has recently been shown that this disorder is caused by putative loss-of-function mutations in a transcription factor (LMX1B) belonging to the LIM-homeodomain family, members of which are known to be important for pattern formation during development. A cohort of eight Dutch NPS families were screened for mutations in the LMX1B gene; seven different mutations, including one novel variant, were identified.
View Article and Find Full Text PDF