In baseball pitchers the elbow is exposed to high and repetitive loads (i.e. external valgus torque), caused by pitching a high number of balls in a practice session or game.
View Article and Find Full Text PDFMuscle overload injuries in strength training might be prevented by providing personalized feedback about muscle load during a workout. In the present study, a new muscle load feedback application, which monitors and visualizes the loading of specific muscle groups, was developed in collaboration with the fitness company Gymstory. The aim of the present study was to examine the effectiveness of this feedback application in managing muscle load balance, muscle load level, and muscle soreness, and to evaluate how its actual use was experienced.
View Article and Find Full Text PDFIndividuals with an upper motor neuron syndrome, e.g., stroke survivors, may have a pathological increase of passive ankle stiffness due to spasticity, that impairs ankle function and activities such as walking.
View Article and Find Full Text PDFHuman hands are complex biomechanical systems that allow for dexterous tasks with many degrees of freedom. Coordination of the fingers is essential for many activities of daily living and involves integrating sensory signals. During this sensory integration, the central nervous system deals with the uncertainty of sensory signals.
View Article and Find Full Text PDFAutonomous robots are used to inspect, repair and maintain underwater assets. These tasks require energy-efficient robots, including efficient movement to extend available operational time. To examine the suitability of a propulsion system based on undulating fins, we built two robots with one and two fins, respectively, and conducted a parametric study for combinations of frequency, amplitude, wavenumber and fin shapes in free-swimming experiments, measuring steady-state swimming speed, power consumption and cost of transport.
View Article and Find Full Text PDFMarkerless estimation of 3D Kinematics has the great potential to clinically diagnose and monitor movement disorders without referrals to expensive motion capture labs; however, current approaches are limited by performing multiple de-coupled steps to estimate the kinematics of a person from videos. Most current techniques work in a multi-step approach by first detecting the pose of the body and then fitting a musculoskeletal model to the data for accurate kinematic estimation. Errors in training data of the pose detection algorithms, model scaling, as well the requirement of multiple cameras limit the use of these techniques in a clinical setting.
View Article and Find Full Text PDFSensors (Basel)
December 2022
Background: Inertial measurement units (IMUs) offer the possibility to capture the lower body motions of players of outdoor team sports. However, various sources of error are present when using IMUs: the definition of the body frames, the soft tissue artefact (STA) and the orientation filter. Methods to minimize these errors are currently being used without knowing their exact influence on the various sources of errors.
View Article and Find Full Text PDFMuscle force analysis can be essential for injury risk estimation and performance enhancement in sports like strength training. However, current methods to record muscle forces including electromyography or marker-based measurements combined with a musculoskeletal model are time-consuming and restrict the athlete's natural movement due to equipment attachment. Therefore, the feasibility and validity of a more applicable method, requiring only a single standard camera for the recordings, combined with a deep-learning model and musculoskeletal model is evaluated in the present study during upper-body strength exercises performed by five athletes.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a promising tool to improve and speed up motor rehabilitation after stroke, but inconsistent clinical effects refrain tDCS from clinical implementation. Therefore, this study aimed to assess the need for individualized tDCS configurations in stroke, considering interindividual variability in brain anatomy and motor function representation. We simulated tDCS in individualized MRI-based finite element head models of 21 chronic stroke subjects and 10 healthy age-matched controls.
View Article and Find Full Text PDFRecent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences.
View Article and Find Full Text PDFBaseball pitching is associated with a high prevalence of ulnar collateral ligament injuries, potentially due to the high external valgus load on the medial side of the elbow at the instant of maximal shoulder external rotation (MER). studies show that external valgus torque is resisted by the ulnar collateral ligament but could also be compensated by elbow muscles. As the potential active contribution of these muscles in counteracting external valgus load during baseball pitching is unknown, the aim of this study is to determine whether and to what extent the elbow muscles are active at and around MER during a fastball pitch in baseball.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Motion capture systems are extensively used to track human movement to study healthy and pathological movements, allowing for objective diagnosis and effective therapy of conditions that affect our motor system. Current motion capture systems typically require marker placements which is cumbersome and can lead to contrived movements.Here, we describe and evaluate our developed markerless and modular multi-camera motion capture system to record human movements in 3D.
View Article and Find Full Text PDFProprioception is important for regaining motor function in the paretic upper extremity after stroke. However, clinical assessments of proprioception are subjective and require verbal responses from the patient to applied proprioceptive stimuli. Cortical responses evoked by robotic wrist perturbations and measured by electroencephalography (EEG) may be an objective method to support current clinical assessments of proprioception.
View Article and Find Full Text PDFPurpose: Neuromuscular fatigue is considered to be important in the etiology of hamstring strain injuries in football. Fatigue is assumed to lead to decreases in hamstring contractile strength and changes in sprinting kinematics, which would increase hamstring strain injury risk. Therefore, the aim was to examine the effects of football-specific fatigue on hamstring maximal voluntary torque (MVT) and rate of torque development (RTD), in relation to alterations in sprinting kinematics.
View Article and Find Full Text PDFA sustained sensory stimulus with a periodic variation of intensity creates an electrophysiological brain response at associated frequencies, referred to as the steady-state evoked potential (SSEP). The SSEPs elicited by the periodic stimulation of nociceptors in the skin may represent activity of a brain network that is primarily involved in nociceptive processing. Exploring the behavior of this network could lead to valuable insights regarding the pathway from nociceptive stimulus to pain perception.
View Article and Find Full Text PDFObjective: Nonlinear modeling of cortical responses (EEG) to wrist perturbations allows for the quantification of cortical sensorimotor function in healthy and neurologically impaired individuals. A common model structure reflecting key characteristics shared across healthy individuals may provide a reference for future clinical studies investigating abnormal cortical responses associated with sensorimotor impairments. Thus, the goal of our study is to identify this common model structure and therefore to build a nonlinear dynamic model of cortical responses, using nonlinear autoregressive-moving-average model with exogenous inputs (NARMAX).
View Article and Find Full Text PDFGyroscopic actuators are appealing for wearable applications due to their ability to provide overground balance support without obstructing the legs. Multiple wearable robots using this actuation principle have been proposed, but none has yet been evaluated with humans. Here we use the GyBAR, a backpack-like prototype portable robot, to investigate the hypothesis that the balance of both healthy and chronic stroke subjects can be augmented through moments applied to the upper body.
View Article and Find Full Text PDFCurrent athlete monitoring practice in team sports is mainly based on positional data measured by global positioning or local positioning systems. The disadvantage of these measurement systems is that they do not register lower extremity kinematics, which could be a useful measure for identifying injury-risk factors. Rapid development in sensor technology may overcome the limitations of the current measurement systems.
View Article and Find Full Text PDFObjective: This paper introduces the Cross-frequency Amplitude Transfer Function (CATF), a model-free method for quantifying nonlinear stimulus-response interaction based on phase-locked amplitude relationship.
Method: The CATF estimates the amplitude transfer from input frequencies at stimulation signal to their harmonics/intermodulation at the response signal. We first verified the performance of CATF in simulation tests with systems containing a static nonlinear function and a linear dynamic, i.
The human nervous system is an ensemble of connected neuronal networks. Modeling and system identification of the human nervous system helps us understand how the brain processes sensory input and controls responses at the systems level. This study aims to propose an advanced approach based on a hierarchical neural network and non-linear system identification method to model neural activity in the nervous system in response to an external somatosensory input.
View Article and Find Full Text PDFIn baseball pitching, biomechanical parameters have been linked to ball velocity and potential injury risk. However, although the features of a biomechanical model have a significant influence on the kinematics and kinetics of a motion, this influence have not been assessed for pitching. The aim of this study was to evaluate the choice of the trunk and shoulder features, by comparing two models using the same input.
View Article and Find Full Text PDFIn hemiparetic stroke, functional recovery of paretic limb may occur with the reorganization of neural networks in the brain. Neuroimaging techniques, such as magnetic resonance imaging (MRI), have a high spatial resolution which can be used to reveal anatomical changes in the brain following a stroke. However, low temporal resolution of MRI provides less insight of dynamic changes of brain activity.
View Article and Find Full Text PDFTele-manipulation of heavy loads typically requires the simultaneous use of two asymmetric slaves: a crane for vertical weight support and a robot for accurate lateral positioning. The industrial standard prescribes a pair of operators for such tasks (one operator to control each slave), although in principle one operator might control both slaves with a single, hybrid interface. Accurate and safe co-operative handling of the expensive and fragile heavy components is difficult, presumably due to problems in the coordination of the subtasks and the lack of mutual awareness between the two operators.
View Article and Find Full Text PDFBetter insight into white matter (WM) alterations after stroke onset could help to understand the underlying recovery mechanisms and improve future interventions. MR diffusion imaging enables to assess such changes. Our goal was to investigate the relation of WM diffusion characteristics derived from diffusion models of increasing complexity with the motor function of the upper limb.
View Article and Find Full Text PDFThe dynamic behavior of the wrist joint is governed by nonlinear properties, yet applied mathematical models, used to describe the measured input-output (perturbation-response) relationship, are commonly linear. Consequently, the linearly estimated model parameters will depend on properties of the applied perturbation properties (such perturbation amplitude and velocity). We aimed to systematically address the effects of perturbation velocity on linearly estimated neuromechanical parameters.
View Article and Find Full Text PDF