Publications by authors named "Frannie Jiuyi Teo"

To combat infectious diseases, vaccines are considered the best prophylactic strategy for a wide range of the population, but even when vaccines are effective, the administration of therapeutic antibodies against viruses could provide further treatment options, particularly for vulnerable groups whose immunity against the viruses is compromised. Therapeutic antibodies against dengue are ideally engineered to abrogate binding to Fcγ receptors (FcγRs), which can induce antibody-dependent enhancement (ADE). However, the Fc effector functions of neutralizing antibodies against SARS-CoV-2 have recently been reported to improve post-exposure therapy, while they are dispensable when administered as prophylaxis.

View Article and Find Full Text PDF

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus.

View Article and Find Full Text PDF

antibody selection against pathogens from naïve combinatorial libraries can yield various classes of antigen-specific binders that are distinct from those evolved from natural infection. Also, rapid neutralizing antibody discovery can be made possible by a strategy that selects for those interfering with pathogen and host interaction. Here we report the discovery of antibodies that neutralize SARS-CoV-2, the virus responsible for the COVID-19 pandemic, from a highly diverse naïve human Fab library.

View Article and Find Full Text PDF