Cleavable side chain based conjugated polymers (CSCPs) represent a unique approach to offering solution processability with added benefits via the elimination of insulating side chains. This work highlights an optimally designed polythiophene-carboxylic acid based CSCP, POET-T2-COOH, which achieves a conductivity exceeding 350 S/cm in molecularly doped and side chain cleaved films, 100-100,000 times higher than three other structurally isomeric CSCPs. The high conductivity of POET-T2-COOH is accomplished via a new "cleavage with doping" methodology, synergistically combining a strong acid and a primary dopant.
View Article and Find Full Text PDFIn this work, we present a binary assembly model that can predict the co-assembly structure and spatial frequency spectra of monodispersed nanoparticles with two different particle sizes. The approach relies on an iterative algorithm based on geometric constraints, which can simulate the assembly patterns of particles with two distinct diameters, size distributions, and at various mixture ratios on a planar surface. The two-dimensional spatial-frequency spectra of the modeled assembles can be analyzed using fast Fourier transform analysis to examine their frequency content.
View Article and Find Full Text PDFHybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
In organic solar cells (OSCs), a thick active layer usually yields a higher photocurrent with broader optical absorption than a thin active layer. In fact, a ∼300 nm thick active layer is more compatible with large-area processing methods and theoretically should be a better spot for efficiency optimization. However, the bottleneck of developing high-efficiency thick-film OSCs is the loss in fill factor (FF).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
The light outcoupling efficiency of a top-emitting organic light-emitting diode (OLED) is only about 20%, and the majority of the light is trapped in the waveguide modes and surface plasmon polariton (SPP) modes. Extracting the trapped modes can reduce the device power consumption and improve the operating lifetime. In this study, we demonstrate a top-emitting OLED structure with a dielectric spacer to suppress the SPP mode and with a patterned back mirror to extract the waveguide modes.
View Article and Find Full Text PDFLight-emitting diodes (LEDs) with directional and polarized light emission have many photonic applications, and beam shaping of these devices is fundamentally challenging because they are Lambertian light sources. In this work, using organic and perovskite LEDs (PeLEDs) for demonstrations, by selectively diffracting the transverse electric (TE) waveguide mode while suppressing other optical modes in a nanostructured LED, the authors first demonstrate highly directional light emission from a full-area organic LED with a small divergence angle less than 3° and a TE to transverse magnetic (TM) polarization extinction ratio of 13. The highly selective diffraction of only the TE waveguide mode is possible due to the planarization of the device stack by thermal evaporation and solution processing.
View Article and Find Full Text PDFCavity effects play an important role in determining the out-coupling efficiency of an OLED. By fabricating OLEDs on corrugated substrates, the waveguide and SPP modes can be extracted by diffraction. However, corrugation does not always lead to an enhancement in out-coupling efficiency due to the reduction of the electrode reflectance and hence the cavity effects.
View Article and Find Full Text PDFPerovskite light-emitting diodes have been gaining attention in recent years due to their high efficiencies. Despite of the recent progress made in device efficiency, the operation mechanisms of these devices are still not well understood, especially the effects of ion migration. In this work, the role of ion migration is investigated by measuring the transient electroluminescence and current responses, with both the current and efficiency showing a slow response in a time scale of tens of milliseconds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
Conventional ultrasonic imaging requires acoustic scanning over a target object using a piezoelectric transducer array, followed by signal processing to reconstruct the image. Here, we report a novel ultrasonic imaging device that can optically display an acoustic signal on the surface of a piezoelectric transducer. By fabricating an organic light-emitting diode (OLED) on top of a piezoelectric crystal, lead zirconate titanate (PZT), an acousto-optical piezoelectric OLED (p-OLED) transducer is realized, converting an acoustic wave profile directly to an optical image.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
A typical top-emitting organic light-emitting diode (OLED) has a strong microcavity effect because of the two reflective electrodes. The cavity effect causes a serious color shift with the viewing angles and restricts the organic layer thickness. To overcome these drawbacks, we design a multi-mode OLED structure with dual-dielectric spacer layers, which extend the cavity length by more than 10 times.
View Article and Find Full Text PDFQuasi-2D Ruddlesden-Popper halide perovskites with a large exciton binding energy, self-assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi-2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower-dimensional nanosheets (high-bandgap domains) to 3D nanocrystals (low-bandgap domains). High-quality quasi-2D perovskite (PEA) (FA) Pb Br films are fabricated by solution engineering.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
Lead sulfide nanoparticles (PbS NPs) are used in the short-wavelength infrared photodetectors because of their excellent photosensitivity, band gap tunability, and solution processability. It has been a challenge to synthesize high-quality PbS NPs with an absorption peak beyond 2000 nm. In this work, using PbS seed crystals with an absorption peak at 1960 nm, we report a successful synthesis of very large monodispersed PbS NPs having a diameter up to 16 nm by multiple injections.
View Article and Find Full Text PDFIt is commonly accepted that a full bandgap voltage is required to achieving efficient electroluminescence (EL) in organic light-emitting diodes. In this work, we demonstrated organic molecules with a large singlet-triplet splitting can achieve efficient EL at voltages below the bandgap voltage. The EL originates from delayed fluorescence due to triplet fusion.
View Article and Find Full Text PDFThree structurally disordered terpolymer derivatives of PffBT4T-2OD (PCE11), prepared by replacing a varied amount of bithiophene linkers with single thiophenes, were found to exhibit reduced aggregation in solution with increasing thiophene content, while important redox and optoelectronic properties remained similar to those of PffBT4T-2OD. Solar cells based on random terpolymer-PCBM blends exhibited average power conversion efficiencies of over 9.5% when processed with preheated substrates, with fill factors above 70%, exceeding those from PffBT4T-2OD.
View Article and Find Full Text PDFInterfaces between donor and acceptor in a polymer solar cell play a crucial role in exciton dissociation and charge photogeneration. While the importance of charge transfer (CT) excitons for free carrier generation is intensively studied, the effect of blending on the nature of the polymer excitons in relation to the blend nanomorphology remains largely unexplored. In this work, electroabsorption (EA) spectroscopy is used to study the excited-state polarizability of polymer excitons in several polymer:fullerene blend systems, and it is found that excited-state polarizability of polymer excitons in the blends is a strong function of blend nanomorphology.
View Article and Find Full Text PDFDirect integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
We report on two π-conjugated donor-acceptor-donor (D-A-D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2018
In a conventional organic light-emitting diode (OLED), only a fraction of light can escape to the glass substrate and air. Most radiation is lost to two major channels: waveguide modes and surface plasmon polaritons. It is known that reducing the refractive indices of the constituent layers in an OLED can enhance light extraction.
View Article and Find Full Text PDFThe understanding and control of the emission zone in organic light emitting diodes (OLEDs) is crucial to the device operational stability. Using the photoluminescence and electroluminescence degradation data, we have developed a modeling methodology to quantitatively determine the length of the emission zone and correlate that with the degradation mechanism. We first validate the modeling results by studying the emitter concentration effect on operational stability of devices using the well-studied thermal activated delayed fluorescent (TADF) emitter (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN), and our results are consistent with previous published data.
View Article and Find Full Text PDFA trans-N-heterocyclic carbene (NHC) platinum(II) acetylide complex bearing phenyl acetylene ligands (NPtPE1) has been synthesized via the Hagihara reaction in 64% yield. The complex features spectrally narrow deep blue emission with a phosphorescence quantum yield (0.30) and lifetime (∼10 μs) in the solid state.
View Article and Find Full Text PDFThin-film optoelectronic devices based on polycrystalline organolead-halide perovskites have recently become a topic of intense research. Single crystals of these materials have been grown from solution with electrical properties superior to those of polycrystalline films. In order to enable the development of more complex device architectures based on organolead-halide perovskite single crystals, we developed a process to form epitaxial layers of methylammonium lead iodide (MAPbI) on methylammonium lead bromide (MAPbBr) single crystals.
View Article and Find Full Text PDFOrganometallic halide perovskites solar cells are fabricated on nano-scaled corrugated substrates using a sequential deposition method. The corrugated substrates are fabricated using colloidal lithography followed by reactive ion etching. The corrugated structure is found to accelerate the chemical reaction between the sequentially deposited lead iodide (PbI ) and methyl ammonium iodide layers to form stoichiometric perovskite films, and the corrugated morphology is preserved at the interface of the hole transport layer (HTL) and the perovskite layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
A corrugated organic light emitting diode (OLED) with enhanced light extraction is realized by incorporating a corrugated composite electron transport layer (ETL) consisting of two ETLs with different glass transition temperatures. The morphology of the corrugated structure is characterized with atomic force microscopy. The results show that the corrugation can be controlled by the layer thicknesses and annealing temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2016
Direct integration of a vertical organic field-effect transistor (VOFET) and an optoelectronic device offers a single stacked, low power optoelectronic VOFET with high aperture ratios. However, a functional optoelectronic VOFET could not be realized because of the difficulty in fabricating transparent source and gate electrodes. Here, we report a VOFET with an on/off ratio up to 10(5) as well as output current saturation by fabricating a transparent gate capacitor consisting of a perforated indium tin oxide (ITO) source electrode, HfO2 gate dielectric, and ITO gate electrode.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2016
Unlabelled: Silver nanowires (AgNWs) mesh has been used as transparent electrodes in optoelectronic devices. However, the lack of practical patterning techniques for the random percolating nanowire network has limited its applications in devices where a well-defined pixel is required. Here, by controlling the surface wetting properties of a polydimethylsiloxane (PDMS) release template, we are able to pattern the random AgNWs network with uniform conducting property; and due to the hydrophobic recovery nature of PDMS, a multilayer patterning and transferring process can be realized, resulting in a fine-patterned, smooth, and uniform AgNWs mesh/poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (
Pedot: PSS) composite electrode.