Publications by authors named "Franklyn G Prendergast"

Ideas about personalized medicine are underpinned in part by evolutionary biology's Modern Synthesis. In this essay we link personalized medicine to the efforts of the early statistical investigators who quantified the heritability of human phenotype and then attempted to reconcile their observations with Mendelian genetics. As information about the heritability of common diseases was obtained, similar efforts were directed at understanding the genetic basis of disease phenotypes.

View Article and Find Full Text PDF

Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds.

View Article and Find Full Text PDF

Krüppel-like factor (KLF) proteins have elicited significant attention due to their emerging key role in metabolic and endocrine diseases. Here, we extend this knowledge through the biochemical characterization of KLF16, unveiling novel mechanisms regulating expression of genes involved in reproductive endocrinology. We found that KLF16 selectively binds three distinct KLF-binding sites (GC, CA, and BTE boxes).

View Article and Find Full Text PDF

Kinetic studies of biochemical reactions are typically carried out in a dilute solution that rarely contains anything more than reactants, products, and buffers. In such studies, mass-action-based kinetic models are used to analyze the progress curves. However, intracellular compartments are crowded by macromolecules.

View Article and Find Full Text PDF

The glycolipid transfer protein (GLTP) superfamily is defined by the human GLTP fold that represents a novel motif for lipid binding and transfer and for reversible interaction with membranes, i.e., peripheral amphitropic proteins.

View Article and Find Full Text PDF

Human glycolipid transfer protein (GLTP) serves as the GLTP-fold prototype, a novel, to our knowledge, peripheral amphitropic fold and structurally unique lipid binding motif that defines the GLTP superfamily. Despite conservation of all three intrinsic Trps in vertebrate GLTPs, the Trp functional role(s) remains unclear. Herein, the issue is addressed using circular dichroism and fluorescence spectroscopy along with an atypical Trp point mutation strategy.

View Article and Find Full Text PDF

HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated.

View Article and Find Full Text PDF

Using solution NMR spectroscopy, we obtained the structure of Ca(2+)-calmodulin (holoCaM) in complex with peptide C28 from the binding domain of the plasma membrane Ca(2+)-ATPase (PMCA) pump isoform 4b. This provides the first atomic resolution insight into the binding mode of holoCaM to the full-length binding domain of PMCA. Structural comparison of the previously determined holoCaM.

View Article and Find Full Text PDF

Molecular tuning to calcium-binding in the EF-hand motif of holo-calmodulin was studied in solution by NMR (h3)J(NC') H-bond couplings. In the N-terminus lobe of holo-calmodulin, the glutamate crucial for Ca(2+) coordination has network of H-bonds weaker than inferred from the X-ray crystal structure. This glutamate at position 12 appears shifted away from the Ca(2+) preferred coordination, which can explain the lower affinity of the calcium-binding to the N-terminus with respect to C-terminus EF hands.

View Article and Find Full Text PDF

Polarizing effects of productive dendritic cell (DC)-T-cell interactions on DC cytoskeleton have been known in some detail, but the effects on DC membrane have been studied to a lesser extent. We found that T-cell incubation led to DC elongation and segregation of characteristic DC veils to the broader pole of the cell. On the opposite DC pole, we observed a novel membrane feature in the form of bundled microvilli.

View Article and Find Full Text PDF

Quantitation of circulating tumor cells (CTCs) can provide information on the stage of a malignancy, onset of disease progression and response to therapy. In an effort to more accurately quantitate CTCs, we have synthesized fluorescent conjugates of 2 high-affinity tumor-specific ligands (folate-AlexaFluor 488 and DUPA-FITC) that bind tumor cells >20-fold more efficiently than fluorescent antibodies. Here we determine whether these tumor-specific dyes can be exploited for quantitation of CTCs in peripheral blood samples from cancer patients.

View Article and Find Full Text PDF

Two models that have been proposed in the literature for description of kinetics in intracellular environments characterized by macromolecular crowding and inhomogeneities, are mathematically analyzed and discussed. The models are first derived by using phenomenological arguments that lead to generalizations of the law of mass action. The prediction of these models in the case of bimolecular binding reaction is then analyzed.

View Article and Find Full Text PDF

Folate receptor alpha (FRalpha) has emerged as a potential cancer therapy target with several folate-linked therapeutic agents currently undergoing clinical trials. In addition, FRalpha expression in tumors may offer prognostic significance. Most studies on FRalpha expression used reverse transcriptase polymerase chain reaction or cytofluorimetric assays.

View Article and Find Full Text PDF

Protein folding can introduce strain in peptide covalent geometry, including deviations from planarity that are difficult to detect, especially for a protein in solution. We have found dependencies in protein backbone (2)J(NC') couplings on the planarity and the relative orientation of the sequential peptide planes. These dependences were observed in experimental (2)J(NC') couplings from seven proteins, and also were supported by DFT calculations for a model tripeptide.

View Article and Find Full Text PDF

In apo and holoCaM, almost half of the hydrogen bonds (H-bonds) at the protein backbone expected from the corresponding NMR or X-ray structures were not detected by h3JNC' couplings. The paucity of the h3JNC' couplings was considered in terms of dynamic features of these structures. We examined a set of seven proteins and found that protein-backbone H-bonds form two groups according to the h3JNC' couplings measured in solution.

View Article and Find Full Text PDF

We continue investigations into the physical chemistry of intestinal fatty acid binding protein, I-FABP, and its interaction with ANS and other ligands [cf references [Kirk, W., E. Kurian, and F.

View Article and Find Full Text PDF

Calibration of the 3J(NC(gamma)) couplings across the N-C(alpha)-C(beta)-C(gamma) fragment of aspartate and asparagine residues is afforded by two interactions that produce fixed conformations of the side chains in solution. One is the binding of these side chains to calcium ions; the other is the H-bond interaction of these side chains with a backbone amide.

View Article and Find Full Text PDF

Fluorescence resonance energy transfer is a powerful biophysical technique used to analyze the structure of membrane proteins. Here, we used this tool to determine the distances between a distinct position within a docked agonist and a series of distinct sites within the intramembranous confluence of helices and extracellular loops of the cholecystokinin (CCK) receptor. Pseudo-wild-type CCK receptor constructs having single reactive cysteine residues inserted into each of these sites were developed.

View Article and Find Full Text PDF

A fundamental understanding of protein stability and the mechanism of denaturant action must ultimately rest on detailed knowledge about the structure, solvation, and energetics of the denatured state. Here, we use (17)O and (2)H magnetic relaxation dispersion (MRD) to study urea-induced denaturation of intestinal fatty acid-binding protein (I-FABP). MRD is among the few methods that can provide molecular-level information about protein solvation in native as well as denatured states, and it is used here to simultaneously monitor the interactions of urea and water with the unfolding protein.

View Article and Find Full Text PDF

The carbon-nitrogen J-couplings in the hydrogen bonding chains of proteins show that H-bonding mediates peptide-group polarization, which results in the general reduction of peptide-group polarity of folded proteins in solution. The net effect is to make large regions of protein secondary structure, especially beta-sheets, intrinsically more hydrophobic, contributing thereby to overall stability of the tertiary structure.

View Article and Find Full Text PDF

Strong contribution of the aromatic amino acid side chain chromophores to the far-UV circular dichroism (CD) spectra substantially distorts a relatively weak CD signal originating from beta sheet, the main type of immunoglobulin secondary structure. In this study we compared the secondary structure calculated from the far-UV CD spectra with the X-ray data for three antibody Fab fragments. Calculations were performed with three different algorithms, using two sets of reference proteins.

View Article and Find Full Text PDF

The H-bond ((h3)J(NC')) and peptide bond ((1)J(NC')) scalar couplings establish connectivity of the electronic structure in the H-bond chains of proteins. The correlated changes of (h3)J(NC') and (1)J(NC') couplings extend over several peptide groups in the chains. Consequently, the electronic structure of the H-bond chains can affect (h3)J(NC') in a manner that is independent of the local H-bond geometry.

View Article and Find Full Text PDF

The completion of the Human Genome Project, the growing effort on proteomics, and the Structural Genomics Initiative have recently intensified the attention being paid to reliable computer docking programs able to identify molecules that can affect the function of a macromolecule through molecular complexation. We report herein an automated computer docking program, EUDOC, for prediction of ligand-receptor complexes from 3D receptor structures, including metalloproteins, and for identification of a subset enriched in drug leads from chemical databases. This program was evaluated from the standpoints of force field and sampling issues using 154 experimentally determined ligand-receptor complexes and four "real-life" applications of the EUDOC program.

View Article and Find Full Text PDF

Fluorescence is a powerful biophysical tool for the analysis of the structure and dynamics of proteins. Here, we have developed two series of new fluorescent probes of the cholecystokinin (CCK) receptor, representing structurally related peptide agonists and antagonists. Each ligand had one of three distinct fluorophores (Alexa(488), nitrobenzoxadiazolyl, or acrylodan) incorporated in analogous positions at the amino terminus just outside the hormone's pharmacophore.

View Article and Find Full Text PDF

DREAM, an EF-hand protein, associates with and modulates the activity of presenilins and Kv4 potassium channels in neural and cardiac tissues and represses prodynorphin and c-fos gene expression by binding to DNA response elements in these genes. Information concerning the metal-binding properties of DREAM and the consequences of metal binding on protein structure are important in understanding how this protein functions in cells. We now show that DREAM binds 1 mol of calcium/mol of protein with relatively high affinity and another 3 mol of calcium with lower affinity.

View Article and Find Full Text PDF