The neoplastic transformation of human hybrid CGL1 cells is affected by perturbations from external influences such as serum batch and concentration, the number of medium changes during the 21-day expression period and cell seeding density. Nevertheless, for doses up to 1.5 Gy, published transformation frequencies for low linear energy transfer (LET) radiations (gamma-rays, MeV electrons or photons) are in good agreement, whereas for higher doses larger variations are reported.
View Article and Find Full Text PDFThe cell cycle-dependent relative contributions of error-prone single-strand annealing (SSA), error-free conservative homologous recombination (HR), and potentially error-prone nonhomologous DNA end joining (NHEJ) to repair simple (induced by 200 kV X rays) or complex (induced by (241)Am alpha particles) DNA double-strand breaks (DSBs) in Chinese hamster ovary cells are reported for the first time. Cells of the parental cell line AA8 and its derivatives UV41 (SSA-deficient), irs1SF (HR-deficient) and V3 (NHEJ-deficient) were synchronized in G(1) or in S phase, and survival responses after exposure to either type of radiation were measured. It is demonstrated for the first time that in G(1)-phase SSA is negligible for the repair of DSBs of various complexities.
View Article and Find Full Text PDFThe purpose of this study was to investigate the cell cycle-dependent role of nonhomologous DNA end joining (NHEJ), conservative homologous recombination (HR), and single-strand annealing (SSA) for the repair of simple DNA double-strand breaks (DSBs) induced by H(2)O(2)-mediated OH radicals in CHO cells. Cells of the cell lines V3 (NHEJ-deficient), irs1SF (HR-deficient) and UV41 (SSA-deficient) and their parental cell line AA8 were exposed to various concentrations of H(2)O(2) in G(1) or S phase of the cell cycle and their colony-forming ability was assayed. In G(1) phase, NHEJ was the most important-if not the only-mechanism to repair H(2)O(2)-mediated DSBs; this was similar to results obtained in a parallel study of more complex DSBs induced by sparsely or densely ionizing radiation.
View Article and Find Full Text PDFWe have studied the dependence of clonogenic bystander effects on defects in the pathways of DNA double-strand break (DSB) repair and on linear energy transfer (LET). The single-ion microbeam of the Physikalisch-Technische Bundesanstalt (PTB) was used to irradiate parental Chinese hamster ovary cells or derivatives deficient in nonhomologous end joining (NHEJ) or homologous recombination (HR) in the G1-phase of the cell cycle. Cell nuclei were targeted with 10 MeV protons (LET = 4.
View Article and Find Full Text PDFRadiat Prot Dosimetry
July 2007
The PTB microbeam is routinely used for the irradiation of living cells using protons (1-20 MeV) and alpha particles (1-28 MeV). The beam diameter is approximately 2 microm (fwhm), achieved by focussing, resulting in an excellent energy resolution and practically no scattered particles. Recently, an electrostatic beam scanner was added to the facility which allows targeting of each cell within 1 ms.
View Article and Find Full Text PDFThe hybrid cell line CGL1 is the only cell line which allows quantitation of neoplastic transformation in human cells. Hybrid cells were exposed to 3.4 MeV alpha particles or to mammography X rays (29 kV(p)) and both survival and neoplastic cell transformation were assayed.
View Article and Find Full Text PDFPurpose: To investigate the dependence of bystander effects on linear energy transfer (LET) in the low dose region.
Materials And Methods: The single-ion microbeam of the Physikalisch-Technische Bundesanstalt (PTB) was used to irradiate confluent primary human skin fibroblasts. Cells plated on a special irradiation dish were targeted with 10 MeV protons (LET 4.
The efficiency of ionizing photon radiation for inducing mutations, chromosome aberrations, neoplastic cell transformation, and cell killing depends on the photon energy. We investigated the induction and rejoining of DNA double-strand breaks (DSBs) as possible contributors for the varying efficiencies of different photon energies. A specialized pulsed-field gel electrophoresis assay based on Southern hybridization of single Mbp genomic restriction fragments was employed to assess DSB induction and rejoining by quantifying the restriction fragment band.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are formed during the processing of DNA interstrand crosslinks in replicating yeast and Chinese hamster cells exposed to DNA crosslinkers such as psoralen plus UVA or nitrogen mustard. They were also detected in human cells after treatment with photoactivated psoralen or mitomycin C. In contrast, no DSBs were observed after exposure of Chinese hamster cells to cisplatin, another crosslinking agent widely used for the therapy of various cancers, challenging a common role for DSBs in the processing of DNA interstrand crosslinks.
View Article and Find Full Text PDFChromatid breaks have previously been shown to be induced in G2-phase cells after exposure to ionizing radiation (X and gamma rays) as a linear function of dose, consistent with a single-event mechanism. DNA double-strand breaks (DSBs) are thought to be the initiating lesion, and experiments with a genetically engineered cell line containing a single DSB site also indicate that a single DSB is sufficient to induce a chromatid break. Although the precise mechanism of conversion of an isolated DSB into a chromatid break is not yet understood, it is known that a proportion of chromatid breaks result from rearrangements between sister chromatids.
View Article and Find Full Text PDFPurpose: To measure the mutagenic effectiveness of low-filtered 30 kVp X-rays, mammography X-rays and conventional (200 kVp) X-rays in mammalian cells.
Materials And Methods: Two different cell lines and mutation assays were used. Exponentially growing SV40-transformed human fibroblasts were exposed to graded doses of mammography (29 kVp, tungsten anode, 50 microm Rh filter) or conventional X-rays and the frequency of 6-thioguanine-resistent HPRT-deficient mutants was determined.
Mutation induction in the HPRT gene of human fibroblasts after irradiation with mammography-like 29 kVp or 200 kVp x-rays shows radiohypersensitivity for doses smaller than approximately 0.5 Gy. Similarly, mutation induction in the CD 59 gene on human chromosome 11 in A(L) cells shows radiohypersensitivity for doses smaller than approximately 0.
View Article and Find Full Text PDFThe fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates for occupational and medical exposures is that the gamma rays of Hiroshima and Nagasaki are considered as equal efficiencies to other low LET radiations up to an LET of 10 keV.micron-1. For breast cancer induction, neoplastic cell transformation, mutation, reciprocal translocations and dicentrics in human lymphocytes, a strong and very similar dependence of the RBE values on photon energy or on LET is observed.
View Article and Find Full Text PDFThe fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer.
View Article and Find Full Text PDFInduction of DNA double-strand breaks (dsb) and their distribution are dependent on the energy deposition pattern within the cell nucleus (physical structure) and the ultrastructure of the chromosomes and its variation by the cell cycle and gene activities (biological structure). For electron radiation very similar RBE-values are observed for mammalian and yeast cells (AlK, 1.5 keV, 15 keV/micrometer: 2.
View Article and Find Full Text PDFPremature chromosome condensation (PCC) experiments using human lymphocytes with centromere staining have shown that after exposure to 3.45 MeV alpha-particle radiation, the full number of dicentric chromosomes appears when the cell fusion protocol is applied immediately after irradiation. In this case, the time available for repair and misrepair of DNA damage is only about 30 min.
View Article and Find Full Text PDFYields of DNA double-strand breaks were determined in primary human skin fibroblasts exposed to 1H and 4He ions at various linear energy transfers (LETs) and to 15 MeV electrons as the reference radiation. The values obtained for the relative biological effectiveness (RBE) were 2.03, 1.
View Article and Find Full Text PDFPurpose: Fludarabine monophosphate (fludarabine-P) is a relatively new drug in the treatment of different haematological diseases. The mechanism of action also implies a possible role of this drug as a radiosensitizer. Up to now no in vitro investigations dealing with radiosensitizing effects of fludarabine-P in carcinoma cell lines and fibroblasts have been published.
View Article and Find Full Text PDFPurpose: This short review summarizes the data obtained with various techniques for measuring the yields of double strand breaks (dsb) produced by particle radiations of differing linear energy transfer (LET) in order to obtain relative biological effectiveness (RBE) values.
Results And Conclusions: Studies aimed at understanding the interactions of different types of radiation with cellular DNA have monitored the yields of DNA dsb versus radiation quality. Several techniques have been used to measure dsb yields in mammalian cells, and these include: neutral sedimentation gradients, filter elution and more recently pulsed field gel electrophoresis techniques (PFGE).
For the assessment of radiation risk at low doses, it is presumed that the shape of the low-dose-response curve in humans for cancer induction is linear. Epidemiological data alone are unlikely to ever have the statistical power needed to confirm this assumption. Another approach is to use oncogenic transformation in vitro as a surrogate for carcinogenesis in vivo.
View Article and Find Full Text PDFYields of DNA double-strand breaks (dsb), i.e. the average number of dsb, N, per relative molar mass, M(r), and dose, D, produced by electrons and photons in the energy range 50 eV-1 MeV were calculated.
View Article and Find Full Text PDFOncogenic transformation and inactivation were investigated in C3H10T1/2 mouse embryo fibroblasts exposed to proton-induced 0.28 keV carbon K (CK)-characteristic X-rays and 60Co gamma-rays as reference radiation at high dose-rate (2-3 and 0.7 Gy/min respectively).
View Article and Find Full Text PDFThe kinetics of recombinational repair of plasmid DNA double-strand breaks (dsb) and gaps (dsg) of different sizes and ends were studied. For this purpose we used the mutant rad54-3 of the yeast Saccharomyces cerevisiae, which is temperature dependent with respect to genetic recombination and rejoining of dsb/dsg, allowing us to stop these processes by shifting cells to the restrictive temperature. We found that the kinetics of repair of cohesive-ended dsb and small gaps (up to 400 bp) are similar and characterized by two phases separated by a plateau.
View Article and Find Full Text PDFIn this paper we study the influence of non-homology between plasmid and chromosomal DNA on the efficiency of recombinational repair of plasmid double-strand breaks and gaps in yeast. For this purpose we used different combinations of plasmids and yeast strains carrying various deletions within the yeast LYS2 gene. A 400 bp deletion in plasmid DNA had no effect on recombinational plasmid repair.
View Article and Find Full Text PDFThis study contributes to the elucidation of the molecular mechanism underlying potentially lethal damage (PLD) repair. Repair of DNA double-strand breaks (dsbs) is involved in PLD repair in yeast, i.e.
View Article and Find Full Text PDF