Publications by authors named "Frank Yaghmaie"

Chemical reduction was used to synthesize silver crystals on the surface of multiwall carbon nanotubes (MWCNTs) in the presence of acetone, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone, and isopropyl alcohol as solvent. DMF and sodium dodecyl sulfate were used as a reducing and a stabilizing agent, respectively. The structure and nature of hybrid MWCNT/silver were characterized by Raman spectroscopy, FTIR spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM).

View Article and Find Full Text PDF

This work describes a technique for forming nanometer-scale pixilated lipid domains that are self-organized into geometric patterns residing on a square lattice. In this process, a lipid multibilayer stack is deposited onto a silica substrate patterned with a square lattice array of bumps, hemispherical on their sides, formed by electron beam lithography. Domain patterns are shown to be confined to the flat grid between the bumps and composed of connected and individual domain pixels.

View Article and Find Full Text PDF

Direct thermal-UV nanoimprinting of an organometallic hybrid film has been demonstrated to fabricate nanoscale features into a novel organic-inorganic solution containing selected metals. The film can be patterned at low temperature and pressure, and requires only a short processing time. When analyzed by energy dispersion X-ray spectroscopy, the authors observe both organic and metal content in the final patterned features.

View Article and Find Full Text PDF

Use of the percutaneous route may avoid some of the undesirable side effects that occur following oral administration in estrogen replacement therapy. At present, knowledge of estradiol transdermal properties relating to delivery of drugs in the skin is lacking. One reason is that in the existing transport models of estradiol, the skin is regarded as a single layer.

View Article and Find Full Text PDF

The development and processing of hybrid inorganic-organic thin film materials plays a critical role in advancing interdisciplinary sciences and device manufacturing. Here we present a novel approach to synthesize and deposit acrylate-containing organic/inorganic hybrid films. The material is based on a chemical solution and includes specifically desired metal dopants that are fully integrated into the backbone of the polymer structure.

View Article and Find Full Text PDF