In response to nutritional stress, microtubules in cells of the Drosophila female germline are depleted from the cytoplasm and accumulate cortically. This triggers aggregation of mRNPs into large processing bodies (P-bodies) and oogenesis arrest. Here, we show that hyperacetylation of α-tubulin at lysine 40 (K40) alters microtubule dynamics and P-body formation.
View Article and Find Full Text PDFmRNA binding proteins (RBPs) play a major role in post-transcriptional control of gene expression. To understand the complex regulatory processes regulating a specific mRNA during its life-time, a comprehensive view of the bound RBPs is essential. Here, we describe a method for transcript-specific isolation of endogenous ribonucleoprotein complexes (RNPs) from Drosophila egg-chambers.
View Article and Find Full Text PDFArrays of short, singly-labeled ssDNA oligonucleotides enable hybridization with single molecule sensitivity and efficient transcript specific RNA capture. Here, we describe a simple, enzymatic protocol that can be carried out using basic laboratory equipment to convert arrays of PCR oligos into smFISH and RAP probesets in a quantitative, cost-efficient and flexible way.
View Article and Find Full Text PDFArrays of singly labeled short oligonucleotides that hybridize to a specific target revolutionized RNA biology, enabling quantitative, single-molecule microscopy analysis and high-efficiency RNA/RNP capture. Here, we describe a simple and efficient method that allows flexible functionalization of inexpensive DNA oligonucleotides by different fluorescent dyes or biotin using terminal deoxynucleotidyl transferase and custom-made functional group conjugated dideoxy-UTP. We show that (i) all steps of the oligonucleotide labeling-including conjugation, enzymatic synthesis, and product purification-can be performed in a standard biology laboratory, (ii) the process yields >90%, often >95% labeled product with minimal carryover of impurities, and (iii) the oligonucleotides can be labeled with different dyes or biotin, allowing single-molecule FISH, RNA affinity purification, and Northern blot analysis to be performed.
View Article and Find Full Text PDFAnalysis of single molecules in living cells has provided quantitative insights into the kinetics of fundamental biological processes; however, the dynamics of messenger RNA (mRNA) translation have yet to be addressed. We have developed a fluorescence microscopy technique that reports on the first translation events of individual mRNA molecules. This allowed us to examine the spatiotemporal regulation of translation during normal growth and stress and during Drosophila oocyte development.
View Article and Find Full Text PDFCytosolic compartmentalization through liquid-liquid unmixing, such as the formation of RNA granules, is involved in many cellular processes and might be used to regulate signal transduction. However, specific molecular mechanisms by which liquid-liquid unmixing and signal transduction are coupled remain unknown. Here, we show that during cellular stress the dual specificity kinase DYRK3 regulates the stability of P-granule-like structures and mTORC1 signaling.
View Article and Find Full Text PDFThe reggie/flotillin proteins oligomerize and associate into clusters which form scaffolds for membrane microdomains. Besides their localization at the plasma membrane, the reggies/flotillins reside at various intracellular compartments; however, the trafficking pathways used by reggie-1/flotillin-2 remain unclear. Here, we show that trafficking of reggie-1/flotillin-2 is BFA sensitive and that deletion mutants of reggie-1/flotillin-2 accumulate in the Golgi complex in HeLa, Jurkat and PC12 cells, suggesting Golgi-dependent trafficking of reggie-1/flotillin-2.
View Article and Find Full Text PDF