Publications by authors named "Frank W Sellke"

The promise of injection of extracellular matrix (ECM) from animal hearts as a treatment of myocardial ischemia has been limited by immune reactions and harsh ECM-damaging extraction procedures. We developed a novel method to produce lab-grown human 3D acellular ECM particles from human mesenchymal stem cells (MSCs) to mitigate product variability, immunogenicity, and preserve ECM architecture. We hypothesized that intramyocardial injection (I/M) of this novel ECM (dia ~200 microns) would improve cardiac function in a post-myocardial infarction (MI) murine model.

View Article and Find Full Text PDF

Background: Coronary artery disease is the leading cause of death worldwide. It imposes an enormous symptomatic burden on patients, leaving many with residual disease despite optimal procedural therapy and up to one-thirds with debilitating angina amenable neither to procedures, nor to current pharmacological options. Semaglutide (SEM), a GLP-1 (glucagon-like peptide 1) agonist originally approved for management of diabetes, has garnered substantial attention for its capacity to attenuate cardiovascular risk.

View Article and Find Full Text PDF

Background: Cardioplegic ischemia/reperfusion (I/R) injury poses substantial challenges during postoperative recovery, with diabetic patients particularly susceptible to adverse events. Using a model entailing the subjection of human coronary artery endothelial cells (HCAECs) to simulated cardioplegic I/R, we investigated the potential of protein kinase c β (PKC-β) inhibition to augment cellular survival in this context.

Study Design: HCAECs were isolated from harvested coronary arteries of diabetic (D) and nondiabetic (C) patients (N = 4 per group).

View Article and Find Full Text PDF

Background: Emerging data suggest women have worse outcomes than men following cardioplegia and cardiopulmonary bypass (CP/CPB). Altered coronary microvascular function affecting myocardial perfusion may contribute, but human translational studies are lacking.

Methods: Viable coronary microvessels (<200 μ m) were dissected from human atrial samples collected before and after CP/CPB from a subset of 108 patients enrolled.

View Article and Find Full Text PDF

Introduction: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have shown efficacy in the context of heart failure but have not been well-studied in ischemic heart disease. We employed a large animal model of chronic coronary artery disease and metabolic syndrome (MS) to investigate the hemodynamic and metabolic consequences of SGLT2i administration.

Methods: Thirty-eight Yorkshire swine were divided into two groups, with half (n = 21) receiving a high fat diet to induce MS, and the other half fed a standard diet (n = 17).

View Article and Find Full Text PDF

Background: Lung cancer remains the greatest cause of cancer-related death, and multiple large studies have identified persistent racial disparities in lung cancer outcomes. In this study, we used public recording of lung cancer data on clinicaltrials.gov to sample age, gender, racial, and ethnic characteristics of participants in lung cancer clinical trials.

View Article and Find Full Text PDF

Objective: Coronary artery disease remains a leading cause of morbidity and mortality worldwide. Patients with advanced coronary artery disease who are not eligible for endovascular or surgical revascularization have limited options. Extracellular vesicles have shown potential to improve myocardial function in preclinical models.

View Article and Find Full Text PDF

Objective: Coronary artery disease (CAD) is the leading cause of death worldwide. It imposes an enormous symptomatic burden on patients, leaving many with residual disease despite optimal procedural therapy, and up to 1/3 with debilitating angina amenable neither to procedures, nor to current pharmacologic options. Semaglutide, a glucagon-like peptide 1 agonist originally approved for management of diabetes, has garnered substantial attention for its capacity to attenuate cardiovascular risk.

View Article and Find Full Text PDF

Aim: Recent studies demonstrate that sodium-glucose cotransporter 2 inhibitors (SGLT2i) and dipeptidyl peptidase-4 inhibitors (DPP4i), two classes of antidiabetic drugs, are cardioprotective. However, the mechanisms of these benefits and their comparative efficacy remain unclear. We aimed to compare the effects of these antidiabetic agents on cardiac function, perfusion, and microvascular density using a swine model of chronic myocardial ischemia.

View Article and Find Full Text PDF

Although both clinical data and animal models suggest cardiovascular benefits following administration of Dipeptidyl Peptidase 4 (DPP-4) inhibitors, the underlying mechanisms remain unclear. We therefore sought to evaluate the effect of the DPP-4 inhibitor sitagliptin on myocardial fibrosis, and insulin signaling in chronic myocardial ischemia using a swine model. An ameroid constrictor placement on the left coronary circumflex artery of thirteen Yorkshire swine to model chronic myocardial ischemia.

View Article and Find Full Text PDF

Objective: To test the efficacy of metformin (MET) during the induction of coronary ischemia on myocardial performance in a large animal model of coronary artery disease (CAD) and metabolic syndrome (MS), with or without concomitant extracellular vesicular (EV) therapy.

Background: Although surgical and endovascular revascularization are durably efficacious for many patients with CAD, up to one-third are poor candidates for standard therapies. For these patients, many of whom have comorbid MS, adjunctive strategies are needed.

View Article and Find Full Text PDF

Cardiopulmonary bypass (CPB) initiates an intense inflammatory response due to various factors: conversion from pulsatile to laminar flow, cold cardioplegia, surgical trauma, endotoxemia, ischemia-reperfusion injury, oxidative stress, hypothermia, and contact activation of cells by the extracorporeal circuit. Redundant and overlapping inflammatory cascades amplify the initial response to produce a systemic inflammatory response, heightened by coincident activation of coagulation and fibrinolytic pathways. When unchecked, this inflammatory response can become maladaptive and lead to serious postoperative complications.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) is a major reason for patients being readmitted to the hospital after cardiac surgery, but the specific risk factors are not well understood.
  • This study used data from the National Readmissions Database to identify risk factors for 30-day HF readmissions in patients who underwent various types of cardiac surgeries.
  • Key risk factors found included older age, female gender, prolonged hospital stays, and certain pre-existing health conditions, with prior coronary artery bypass grafting (CABG) providing some protection against readmission.
View Article and Find Full Text PDF

Introduction: Sodium-glucose cotransporter-2 inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome and the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia.

Methods: Twenty-one Yorkshire swine were fed a high-fat diet starting at 6 weeks of age to induce metabolic syndrome.

View Article and Find Full Text PDF

Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients.

View Article and Find Full Text PDF

Background: We previously found that cardioplegic arrest and cardiopulmonary bypass are associated with altered coronary arteriolar response to serotonin in patients undergoing cardiac surgery. In this study, we investigated the effects of hypertension on coronary microvascular vasomotor tone in response to serotonin and alterations in serotonin receptor protein expression in the setting of cardioplegic arrest and cardiopulmonary bypass.

Methods: Coronary arterioles were dissected from harvested pre- and post-cardioplegic arrest and cardiopulmonary bypass right atrial tissue samples of patients undergoing cardiac surgery with normotension, well-controlled hypertension, and uncontrolled hypertension.

View Article and Find Full Text PDF

Dysfunction of the coronary microvasculature has become increasingly recognized as an important mechanism of myocardial ischemia in patients without obstructive coronary artery disease. The causes and management of coronary microvascular dysfunction remain poorly understood and are still largely based on extrapolation of epicardial coronary artery disease data. Quantification of myocardial blood flow and flow reserve have improved diagnosis, though important questions remain.

View Article and Find Full Text PDF

Gastrointestinal complications after cardiac surgery are relatively rare entities but carry a high mortality. We identified over 70 articles written since 2010 using the PubMed database. We included 40 in our review.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are known to be cardioprotective independent of glucose control, but the mechanisms of these benefits are unclear. We previously demonstrated improved cardiac function and decreased fibrosis in a swine model of chronic myocardial ischemia. The goal of this study is to use high-sensitivity proteomic analyses to characterize specific molecular pathways affected by SGLT-2 inhibitor canagliflozin (CAN) therapy in a swine model of chronic myocardial ischemia.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion.

View Article and Find Full Text PDF

Small animal models have shown improved cardiac function with DPP-4 inhibition, but many human studies have shown worse outcomes or no benefit. We seek to bridge the gap by studying the DPP-4 inhibitor sitagliptin in a swine model of chronic myocardial ischemia using proteomic analysis. Thirteen Yorkshire swine underwent the placement of an ameroid constrictor on the left coronary circumflex artery to model chronic myocardial ischemia.

View Article and Find Full Text PDF

The past several decades have borne witness to several breakthroughs and paradigm shifts within the field of cardiovascular medicine, but one component that has remained constant throughout this time is the need for accurate animal models for the refinement and elaboration of the hypotheses and therapies crucial to our capacity to combat human disease. Numerous sophisticated and high-throughput molecular strategies have emerged, including rational drug design and the multi-omics approaches that allow extensive characterization of the host response to disease states and their prospective resolutions, but these technologies all require grounding within a faithful representation of their clinical context. Over this period, our lab has exhaustively tested, progressively refined, and extensively contributed to cardiovascular discovery on the basis of one such faithful representation.

View Article and Find Full Text PDF

Introduction: Patients with advanced coronary artery disease (CAD) who are not eligible for stenting or surgical bypass procedures have limited treatment options. Extracellular vesicles (EVs) have emerged as a potential therapeutic target for the treatment of advanced CAD. These EVs can be conditioned to modify their contents.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis.

View Article and Find Full Text PDF