We designed a novel short-term bitransgenic model to better characterize the effects of benzo(a)pyrene (BP) exposure on multi-organ carcinogenesis and to evaluate the effects of a well-recognized antioxidant, N-acetyl-L-cysteine (NAC), on neoplasia. We selected the p53 heterozygous Tg.AC (v-Ha-ras) mouse model for our studies because these mice possess a carcinogen-inducible ras oncogene and one functional p53 tumor suppressor allele.
View Article and Find Full Text PDFThe use of a bitransgenic mouse model for cancer is an effective approach for studying the impact of specific carcinogens and the occurrence of tissue-specific lesions. We studied the novel p53 heterozygous zeta globin-promoted Tg.AC (v-Ha-ras) mouse model because these mice contain a carcinogen-inducible ras oncogene and one functional p53 tumor suppressor allele, both of which occur frequently in human cancers.
View Article and Find Full Text PDFEpidemiological studies support the protective role of dietary antioxidants in preventing cancer. However, emerging evidence suggests that antioxidant supplements may actually exacerbate carcinogenesis. We explored this paradox in a model containing two common genotypic characteristics of human cancers.
View Article and Find Full Text PDF