Controlling movements of flexible arms is a challenging task for the octopus because of the virtually infinite number of degrees of freedom (DOFs) [1, 2]. Octopuses simplify this control by using stereotypical motion patterns that reduce the DOFs, in the control space, to a workable few [2]. These movements are triggered by the brain and are generated by motor programs embedded in the peripheral neuromuscular system of the arm [3-5].
View Article and Find Full Text PDFBrain Behav Evol
March 2010
Cephalopods are a large and ancient group of marine animals with complex brains. Forms extant today are equipped with brains, sensors, and effectors that allow them not to just exist beside modern vertebrates as predators and prey; they compete fiercely with marine vertebrates at every scale from small crustaceans to sperm whales. We review the evolution of this group's brains, learning ability and complex behavior.
View Article and Find Full Text PDFOctopus arms house 200-300 independently controlled suckers that can alternately afford an octopus fine manipulation of small objects and produce high adhesion forces on virtually any non-porous surface. Octopuses use their suckers to grasp, rotate and reposition soft objects (e.g.
View Article and Find Full Text PDFThis paper examines ring size patterns of natural product macrocycles. Evidence is presented that natural macrocycles containing 14-, 16-, and 18-membered rings are of frequent occurrence based on a data mining study. The results raise a question about the limited diversity of macrocycle ring sizes and the nature of the constraints that may cause them.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2002
Olfactory orientation poses many challenges for crustaceans in marine environments. Recent behavioral experiments lead to a new understanding of the role of multiple sensory appendages, whereas application of non-invasive chemical visualization techniques and biomimetic robotics have allowed researchers to correlate the stimulus environment with behavior and to directly test proposed orientation mechanisms in decapod crustaceans.
View Article and Find Full Text PDF