Prussian Blue Analogues (PBAs), which are characterized by their open structure, high stability, and non-toxic properties, have recently been the subject of research for various applications, including their use as electrode precursors for capacitive deionization, gas storage, and environmental purification. These materials can be readily tailored to enhance their affinity towards gases for integration with sensing devices. An improved understanding of PBA-gas interactions is expected to enhance material development and existing sensor deposition schemes greatly.
View Article and Find Full Text PDFThe diversity of cannabinoid isomers and complexity of Cannabis products pose significant challenges for analytical methodologies. In this study, we developed a method to analyze 14 different cannabinoid isomers in diverse samples within milliseconds by leveraging the unique adduct-forming behavior of silver ions in advanced cyclic ion mobility spectrometry-mass spectrometry. The developed method achieved the separation of isomers from four groups of cannabinoids: Δ3-tetrahydrocannabinol (THC) (), Δ8-THC (), Δ9-THC (), cannabidiol (CBD) (), Δ8-iso-THC (), and Δ(4)8-iso-THC () (all MW = 314); 9α-hydroxyhexahydrocannabinol (), 9β-hydroxyhexahydrocannabinol (), and 8-hydroxy-iso-THC () (all MW = 332); tetrahydrocannabinolic acid (THCA) () and cannabidiolic acid (CBDA) () (both MW = 358); Δ8-tetrahydrocannabivarin (THCV) (), Δ8-iso-THCV (), and Δ9-THCV () (all MW = 286).
View Article and Find Full Text PDFΔ-Tetrahydrocannabinol (Δ-THC) is increasingly popular as a controversial substitute for Δ-tetrahydrocannabinol (Δ-THC) in cannabinoid-infused edibles. Δ-THC is prepared from cannabidiol (CBD) by treatment with acids. Side products including Δ-THC and other isomers that might end up in Δ-THC edibles are less studied.
View Article and Find Full Text PDFThe control over the amount of psychoactive THC (Δ-9-tetrahydrocannabinol) in commercial cannabidiol (CBD) products has to be strict. A fast and simple semiquantitative Ag(I)-impregnated paper spray mass spectrometric method for differentiating between THC and CBD, which show no difference in standard single-stage or tandem MS, was established. Because of a different binding affinity to Ag(I) ions, quasi-molecular Ag(I) adducts [THC + Ag] and [CBD + Ag] at / 421 and 423 give different fragmentation patterns.
View Article and Find Full Text PDFIdentification and confirmation of known as well as unknown (bio)chemical entities in ambient mass spectrometry (MS) and MS imaging (MSI) mostly involve accurate mass determination, often in combination with MS/MS or MS work flows. To further improve structural assignment, additional molecular information is required. Here we present an ambient hydrogen/deuterium exchange (HDX) laser ablation electrospray ionization (LAESI) MS method in which, apart from the accurate mass and MS/MS data, the number of exchangeable protons in (un)known molecules is obtained.
View Article and Find Full Text PDFIngestion of products containing Chinese star anise (Illicium verum) fruits contaminated or adulterated with Japanese star anise (Illicium anisatum) fruits can cause poisoning due to the neurotoxin anisatin that is present in Japanese star anise. Thus a rapid, simple and unambiguous distinction between the morphologically similar Chinese star anise and toxic Japanese star anise fruits is important for guaranteeing food safety. After adding ~200 μL of methanol to one star anise carpel placed at 7-10mm from the inlet of a mass spectrometer and applying a potential of ~5 kV to the carpel, an electrospray is created.
View Article and Find Full Text PDFDetailed molecular analysis by Direct Analysis in Real Time High Resolution Mass Spectrometry (DART-HRMS) of ester and amide-terminated monolayers is demonstrated. The structural information obtained allowed monitoring of the progress of a 4-step surface modification.
View Article and Find Full Text PDFAfter ingestion, products containing Chinese star anise (Illicium verum) contaminated or adulterated with Japanese star anise (Illicium anisatum) or other Illicium species, can cause epilepsy, hallucinations, and nausea due to the rare neurotoxic sesquiterpene dilactone anisatin that is present in Japanese star anise. Thus a rapid, simple and unambiguous method for distinguishing between the morphologically similar Chinese star anise and toxic Japanese star anise is important for food safety issues. Direct Analysis in Real Time (DART) ambient ionisation coupled with orbitrap high resolution mass spectrometry allowed the recording of mass spectra of anisatin in solid star anise fruits in seconds without any prior sample pretreatment.
View Article and Find Full Text PDFAn improved comprehensive two-dimensional (LC x LC) HPLC system for the analysis of triacylglycerols was developed. In the first-dimension, a Ag(I)-coated cation exchanger (250 mm x 2.1 mm, 5 microm) was employed with a gradient from 100% MeOH to 6% MeCN in MeOH at 20 microL/min.
View Article and Find Full Text PDFDehydroabietic acid (DHA) (1) is one of the main compounds in Scots pine wood responsible for aquatic and microbial toxicity. The degradation of 1 by Trametes versicolor and Phlebiopsis gigantea in liquid stationary cultures was followed by HPLC-DAD-ELSD. Both fungi rapidly degraded DHA relative to a control.
View Article and Find Full Text PDFAn on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent metabolite resorufin. The system was tested with three P450 1A2 inhibitors, for which minimum detectable amounts (MDA) ranging from 0.
View Article and Find Full Text PDFLipophilic low molar-mass constituents in wood chips for the paper industry result in low quality pulp, pitch deposition, and effluent toxicity. New biotechnological solutions such as fungal pre-treatment of wood chips can reduce pitch problems. This laboratory-scale study focuses on the potential and limitations of a fungal bio-treatment of Norway spruce chips with the white-rot fungus Trametes versicolor.
View Article and Find Full Text PDF