Publications by authors named "Frank Von der Kammer"

In the present work, a procedure based on a dispersive medium for carbon black (CB) isolation from soil samples for analysis was proposed for the first time. Polymeric and biological dispersants and a sequential use of both dispersants were assayed. Asymmetrical flow field flow fractionation with dynamic light scattering detector (AF4-DLS) and sedimentation field flow fractionation with multi-angle light scattering detector (SdF3-MALS) were used for CB quantitation and characterization in the achieved dispersions.

View Article and Find Full Text PDF

This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland).

View Article and Find Full Text PDF

Over the recent years, EU chemicals legislation, guidance and test guidelines have been developed or adapted for nanomaterials to facilitate safe use of nanomaterials. This paper provides an overview of the information requirements across different EU regulatory areas. For each information requirement, a group of 22 experts identified potential needs for further action to accommodate guidance and test guidelines to nanomaterials.

View Article and Find Full Text PDF

Aquatic fate models and risk assessment require experimental information on the potential of contaminants to interact with riverine suspended particulate matter (SPM). While for dissolved contaminants partition or sorption coefficients are used, the underlying assumption of chemical equilibrium is invalid for particulate contaminants, such as engineered nanomaterials, incidental nanoparticles, micro- or nanoplastics. Their interactions with SPM are governed by physicochemical forces between contaminant-particle and SPM surfaces.

View Article and Find Full Text PDF

Particulate emissions from vehicle exhaust catalysts are the primary contributors to platinum group elements (PGEs) being released into roadside environments, especially platinum (Pt) particles. With increasing traffic density, it is essential to quantify the emission, accumulation, and potential health effects of traffic-emitted Pt particles. In this study, three procedures were investigated to extract Pt nanoparticles (NPs) from sediments and characterize them by single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS).

View Article and Find Full Text PDF

Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To make the risk assessment of similar NFs efficient, a number of grouping frameworks have been proposed, which often require assessment of similarity on individual physicochemical properties as part of the group justification.

View Article and Find Full Text PDF

Freshwater suspended particulate matter (SPM) plays an important role in many biogeochemical cycles and serves multiple ecosystem functions. Most SPM is present as complex floc-like aggregate structures composed of various minerals and organic matter from the molecular to the organism level. Flocs provide habitat for microbes and feed for larger organisms.

View Article and Find Full Text PDF

Nanogeochemistry is an emerging focus area recognizing the role of nanoparticles in Earth systems. Engineered nanotechnology has cultivated advanced analytical techniques that are also applicable to nanogeochemistry. Single particle inductively coupled plasma ICP-time-of-flight-mass spectrometry (ICP-TOF-MS) promises a significant step forward, as time-of-flight mass analyzers enable simultaneous quantification of the entire atomic mass spectrum (∼7-250 / ).

View Article and Find Full Text PDF

The potential environmental and human health risks from microplastic (1 µm to 1 mm) and nanoplastic (<1 µm) particles (MNPs) is receiving increasing attention from scientists and the public [...

View Article and Find Full Text PDF

The environmental mobility of Cu and therefore its potential toxicity are closely linked to its attachment to natural organic matter (NOM). Geochemical models assume full lability of metals bound to NOM, especially under strong oxidizing conditions, which often leads to an overestimation of the lability of soil metals. Stable isotope dilution (SID) has been successfully applied to estimate the labile (isotopically exchangeable) pool of soil metals.

View Article and Find Full Text PDF

The dissolution of metal-based engineered nanomaterials (ENMs) in aquatic environments is an important mechanism governing the release of toxic dissolved metals. For the registration of ENMs at regulatory bodies such as REACH, their dissolution behavior must therefore be assessed using standardized experimental approaches. To date, there are no standardized procedures for dissolution testing of ENMs in environmentally relevant aquatic media, and the Organisation for Economic Co-operation and Development (OECD) strongly encourages their development into test guidelines.

View Article and Find Full Text PDF

Gunshot residues (GSRs) from different types of ammunition have been characterized using a new method based on single-particle inductively coupled plasma time-of-flight mass spectrometry (sp-ICP-TOF-MS). This method can analyze thousands of particles per minute enabling rapid sample screening for GSR detection with minimal sample preparation. GSR particles are multi-elemental nanoparticles that are mainly defined by the elements lead, barium, and antimony.

View Article and Find Full Text PDF

Foraminifera are unicellular organisms and play a pivotal role in the marine material cycles. Past observations have shown that the species is the most common foraminifera in the Baltic Sea. Feeding experiments showed that the food uptake and thus the turnover of organic matter are influenced by changes of physical parameters (e.

View Article and Find Full Text PDF

A systematic study on the colloidal behavior of uncoated and polyvinylpyrrolidone (PVP) coated TiO engineered nanomaterials (ENMs) in simulated aqueous media is herein reported, in which conditions representative for natural waters (pH, presence of divalent electrolytes (i.e. Ca/Mg and SO), of natural organic matter (NOM) and of suspended particulate matter (SPM)) were systematically varied.

View Article and Find Full Text PDF

The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach.

View Article and Find Full Text PDF

Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) is ubiquitous in aquatic environments where it interacts with a variety of particles including carbonaceous materials (CMs). The complexity of both DOM and the CMs makes DOM-CM interactions difficult to predict. In this study we have identified the preferential sorption of specific DOM fractions as being dependent on their aromaticity and molecular weight, as well as on the surface properties of the CMs.

View Article and Find Full Text PDF

Emissions of Ce from anthropogenic activities (anthropogenic Ce) into urban wastewater systems and the environment result from its widespread industrial use (abrasives, catalysts, nanotechnology). Because Ce in sewage sludge can also be of geogenic origin, the quantification of anthropogenic Ce in sewage sludge remains elusive. In this study, we evaluated the suitability of Ce oxidation state and rare earth element (REE) patterns for the quantification of anthropogenic Ce fractions in sewage sludge.

View Article and Find Full Text PDF

The implementation and enforcement of product labeling obligation as required, for example, by the cosmetic product regulation, needs simple and precise validated analytical methods. This also applies to the analysis of nanoparticles in products such as cosmetics. However, the provision of such methods is often hampered by inaccurate sizing due to unwanted nanoparticle changes, interference of matrix components with sizing and interactions between nanoparticles and analytical instrumentation.

View Article and Find Full Text PDF

The European Union (EU) has adopted nano-specific provisions for cosmetics, food and biocides, among others, which include binding definitions of the term "nanomaterial". Here we take an interdisciplinary approach to analyse the respective definitions from a legal and practical perspective. Our assessment reveals that the definitions contain several ill-defined terms such as "insoluble" or "characteristic properties" and/or are missing thresholds.

View Article and Find Full Text PDF

Titanium dioxide (TiO2) based nanomaterials (NMs) are among the most produced NMs worldwide. When irradiated with light, particularly UV, TiO2 is photoactive, a property that is explored for several purposes. There are an increasing number of reports on the negative effects of photoactivated TiO2 on non-target organisms.

View Article and Find Full Text PDF

Nanoenabled products (NEPs) have numerous outdoor uses in construction, transportation or consumer scenarios, and there is evidence that their fragments are released in the environment at low rates. We hypothesized that the lower surface availability of NEPs fragment reduced their environmental effects with respect to pristine nanomaterials. This hypothesis was explored by testing fragments generated by intentional micronisation ("the SUN approach"; Nowack et al.

View Article and Find Full Text PDF

Here we compare the standard European benchmark of wood treatment by molecularly dissolved copper amine (Cu-amine), also referred to as aqueous copper amine (ACA), against two nanoenabled formulations: copper(II)oxide nanoparticles (CuO NPs) in an acrylic paint to concentrate Cu as a barrier on the wood surface, and a suspension of micronized basic copper carbonate (CuCO·Cu(OH)) for wood pressure treatment. After characterizing the properties of the (nano)materials and their formulations, we assessed their effects in vitro against three fungal species: Coniophora puteana, Gloeophyllum trabeum, and Trametes versicolor, finding them to be mediated only partially by ionic transformation. To assess the use phase, we quantify both release rate and form.

View Article and Find Full Text PDF