Genes encoded within organelle genomes often evolve at rates different from those in the nuclear genome. Here, we analyzed the relative rates of nucleotide substitution in the mitochondrial, apicoplast, and nuclear genomes in four different lineages of Plasmodium species (malaria parasites) infecting mammals. The rates of substitution in the three genomes exhibit substantial variation among lineages, with the relative rates of nuclear and mitochondrial DNA being particularly divergent between the Laverania (including Plasmodium falciparum) and Vivax lineages (including Plasmodium vivax).
View Article and Find Full Text PDFLaboratory studies of pathogens aim to limit complexity in order to disentangle the important parameters contributing to an infection. However, pathogens rarely exist in isolation, and hosts may sustain co-infections with multiple disease agents. These interact with each other and with the host immune system dynamically, with disease outcomes affected by the composition of the community of infecting pathogens, their order of colonization, competition for niches and nutrients, and immune modulation.
View Article and Find Full Text PDFAfrican trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector.
View Article and Find Full Text PDF