Publications by authors named "Frank Vanhoenshoven"

We introduce a neural cognitive mapping technique named long-term cognitive network (LTCN) that is able to memorize long-term dependencies between a sequence of input and output vectors, especially in those scenarios that require predicting the values of multiple dependent variables at the same time. The proposed technique is an extension of a recently proposed method named short-term cognitive network that aims at preserving the expert knowledge encoded in the weight matrix while optimizing the nonlinear mappings provided by the transfer function of each neuron. A nonsynaptic, backpropagation-based learning algorithm powered by stochastic gradient descent is put forward to iteratively optimize four parameters of the generalized sigmoid transfer function associated with each neuron.

View Article and Find Full Text PDF

While the machine learning literature dedicated to fully automated reasoning algorithms is abundant, the number of methods enabling the inference process on the basis of previously defined knowledge structures is scanter. Fuzzy Cognitive Maps (FCMs) are recurrent neural networks that can be exploited towards this goal because of their flexibility to handle external knowledge. However, FCMs suffer from a number of issues that range from the limited prediction horizon to the absence of theoretically sound learning algorithms able to produce accurate predictions.

View Article and Find Full Text PDF