Publications by authors named "Frank U Renner"

Self-assembled monolayers of corrosion inhibitors of the mercaptobenzimidazole family, SH-BimH, SH-BimH-5NH, and SH-BimH-5OMe, were formed on template-stripped ultraflat Au surfaces using microcontact printing, and subsequently analyzed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and AFM-force spectroscopy (AFM-FS) using a quantitative imaging (QI) mode. Printing of all used inhibitor molecules resulted in clear patterns and in slightly more compact films compared to immersion. The stability of the monolayers is further probed by AFM-FS.

View Article and Find Full Text PDF

Focused-ion beam lift-out and annular milling is the most common method used for obtaining site specific specimens for atom probe tomography (APT) experiments and transmission electron microscopy. However, one of the main limitations of this technique comes from the structural damage as well as chemical degradation caused by the beam of high-energy ions. These aspects are especially critical in highly-sensitive specimens.

View Article and Find Full Text PDF

The molecular-scale structure and dynamics of confined liquids has increasingly gained relevance for applications in nanotechnology. Thus, a detailed knowledge of the structure of confined liquids on molecular length scales is of great interest for fundamental and applied sciences. To study confined structures under dynamic conditions, we constructed an in situ X-ray surface forces apparatus (X-SFA).

View Article and Find Full Text PDF

The interfacial decomposition products forming the so-called solid-electrolyte interphase (SEI) significantly determine the destiny of a Li-ion battery. Ultimate knowledge of its detailed behavior and better control are required for higher rates, longer life-time, and increased safety. Employing an electrochemical surface force apparatus, it is possible to control the growth and to investigate the mechanical properties of an SEI in a lithium-ion battery environment.

View Article and Find Full Text PDF

Lipid bilayers represent the interface between the cell and its environment, serving as model systems for the study of various biological processes. For instance, the addition of small molecules such as alcohols is a well-known process that modulates lipid bilayer properties, being considered as a reference for general anesthetic molecules. A plethora of experimental and simulation studies have focused on alcohol's effect on lipid bilayers.

View Article and Find Full Text PDF

Nanoporous gold (np-Au) is a nanostructured metal with many desirable attributes. Despite the growing number of applications of nanoporous materials, there are still open questions regarding their fabrication and subsequent surface functionalization. For example, the hydrophobic nature of gold surfaces makes the formation of planar supported lipid layers challenging.

View Article and Find Full Text PDF

The molecular structure at charged solid/liquid interfaces is vital for many chemical or electrochemical processes, such as adhesion, catalysis, or the stability of colloidal dispersions. How cations influence structural hydration forces and interactions across negatively charged surfaces has been studied in great detail. However, how anions influence structural hydration forces on positively charged surfaces is much less understood.

View Article and Find Full Text PDF

Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity.

View Article and Find Full Text PDF

Interfaces are essential in electrochemical processes, providing a critical nanoscopic design feature for composite electrodes used in Li-ion batteries. Understanding the structure, wetting and mobility at nano-confined interfaces is important for improving the efficiency and lifetime of electrochemical devices. Here we use a Surface Forces Apparatus to quantify the initial wetting of nanometre-confined graphene, gold and mica surfaces by Li-ion battery electrolytes.

View Article and Find Full Text PDF

The authors report on the effect of ionic strength on the formation of supported vesicle layers of anionic phospholipids 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) and dimyristoylphosphatidylserine (DMPS) onto gold. Using quartz crystal microbalance with dissipation monitoring the authors show that vesicle adsorption is mainly governed by NaCl concentration, reflecting the importance of electrostatic interactions in anionic lipids, as compared to zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine. At low ionic strength, low or no adsorption is observed as a result of vesicle-vesicle electrostatic repulsion.

View Article and Find Full Text PDF

On self-assembled monolayer-covered Cu-Au substrates, localized volume shrinkage at initial dealloying sites leads to cracks within the attacked regions. It is started from well-controlled surface structures to gain fundamental insights in the driving mechanisms of localized corrosion and crack formation. Both the crack density and the crack morphology are critically dependent on surface orientation, crystallography, and inhibitor molecule species.

View Article and Find Full Text PDF

Phosphating is a crucial process in the corrosion protection of metals. Here, activation and fluoride-assisted tricationic phosphating is investigated on aluminum-silicon (AS) coated steel surfaces. Dynamic light scattering results from the activation bath show a bimodal size distribution, with hydrodynamic radii of ~400 nm and ~10 μm.

View Article and Find Full Text PDF

Dealloying is widely utilized but is a dangerous corrosion process as well. Here we report an atomistic picture of the initial stages of electrochemical dealloying of the model system Cu(3)Au (111). We illuminate the structural and chemical changes during the early stages of dissolution up to the critical potential, using a unique combination of advanced surface-analytical tools.

View Article and Find Full Text PDF

We report the design of an improved electrochemical cell for atomic force microscope measurements in corrosive electrochemical environments. Our design improvements are guided by experimental requirements for studying corrosive reactions such as selective dissolution, dealloying, pitting corrosion, and∕or surface and interface forces at electrified interfaces. Our aim is to examine some of the limitations of typical electrochemical scanning probe microscopy (SPM) experiments and in particular to outline precautions and cell-design elements, which must necessarily be taken into account in order to obtain reliable experimental results.

View Article and Find Full Text PDF

In this communication, electrodeposition of Zn from 60-40 mol% ZnCl(2)-1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid on Au substrates has been investigated. For the first time, initial stages of Zn electrocrystallization from BMIC has been studied by in situ X-ray diffraction (XRD) employing synchrotron radiation, which showed an initial epitaxial deposition of Zn and hexagonal Au(1.2)Zn(8.

View Article and Find Full Text PDF

We report on a new electrochemical cell setup, combined with a portable UHV chamber, for in situ x-ray diffraction using synchrotron radiation. In contrast to more traditional electrochemical sample preparation schemes, atomically clean and well-ordered surfaces are routinely prepared by UHV methods, even in the case of reactive elements or alloys. Samples can be transferred from larger UHV systems into the portable chamber without exposure to ambient air.

View Article and Find Full Text PDF