The thermophilic anaerobic Gram-positive bacterium Carboxydothermus ferrireducens utilizes insoluble Fe(III) oxides as electron acceptors in respiratory processes using an extracellular 11-heme cytochrome c OmhA as a terminal reductase. OmhA is able to transfer electrons to soluble and insoluble Fe(III) compounds, substrates of multiheme oxidoreductases, and soluble electron shuttles. The crystal structure of OmhA at 2.
View Article and Find Full Text PDFExpression of heterologous genes in Escherichia coli is a routine technology for recombinant protein production, but the predictable recovery of properly folded and uniformly bioactive material remains a challenge. Misfolded proteins typically accumulate as insoluble inclusion bodies, and a variety of strategies have been employed in efforts to increase the yield of soluble product. One technique is the overexpression of E.
View Article and Find Full Text PDFLong-term survivability is well-known for microorganisms in nutrient-depleted environments, but the damage accrued by proteins and the associated repair processes during the starvation and recovery phase of microbial life still remain enigmatic. We focused on aspartic acid (Asp) racemization and repair in the survival of Pyrococcus furiosus and Thermococcus litoralis under starvation conditions at high temperature. Despite the dramatic decrease of viability over time, 0.
View Article and Find Full Text PDFCertain microorganisms survive long periods of time as endospores to cope with adverse conditions. Since endospores are metabolically inactive, the extent of aspartic acid (Asp) racemization will increase over time and might kill the spores by preventing their germination. Therefore, understanding the relationship between endospore survivability and Asp racemization is important for constraining the long-term survivability and global dispersion of spore-forming bacteria in nature.
View Article and Find Full Text PDFChaperonins are molecular chaperones that play critical physiological roles, but they can be pathogenic. Malfunctional chaperonins cause chaperonopathies of great interest within various medical specialties. Although the clinical-genetic aspects of many chaperonopathies are known, the molecular mechanisms causing chaperonin failure and tissue lesions are poorly understood.
View Article and Find Full Text PDFMicrobial adaptation to extreme conditions takes many forms, including specialized metabolism which may be crucial to survival in adverse conditions. Here, we analyze the diversity and environmental importance of systems allowing microbial carbon monoxide (CO) metabolism. CO is a toxic gas that can poison most organisms because of its tight binding to metalloproteins.
View Article and Find Full Text PDFChaperonopathies are diseases in which abnormal chaperones play an etiopathogenic role. A chaperone is mutated or otherwise abnormal (e.g.
View Article and Find Full Text PDFThe human chaperonin complex is a ~ 1 MDa nanomachine composed of two octameric rings formed from eight similar but non-identical subunits called CCT. Here, we are elucidating the mechanism of a heritable CCT5 subunit mutation that causes profound neuropathy in humans. In previous work, we introduced an equivalent mutation in an archaeal chaperonin that assembles into two octameric rings like in humans but in which all subunits are identical.
View Article and Find Full Text PDFThe chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers.
View Article and Find Full Text PDFAll archaea have a chaperonin of Group II (thermosome) in their cytoplasm and some have also a chaperonin of Group I (GroEL; Cpn60; Hsp60). Conversely, all bacteria have GroEL, some in various copies, but only a few have, in addition, a chaperonin (tentatively designated Group III chaperonin) very similar to that occurring in all archaea, i.e.
View Article and Find Full Text PDFHere we report the complete genome sequence of the chemoorganotrophic, extremely thermophilic bacterium, , which is a Gram negative, strictly anaerobic bacterium. and together form the phylum. The two genomes are highly syntenic, and both are distantly related to spp.
View Article and Find Full Text PDFChaperonins (CPNs) are megadalton sized ATP-dependent nanomachines that facilitate protein folding through complex cycles of complex allosteric articulation. They consist of two back-to-back stacked multisubunit rings. CPNs are usually classified into Group I and Group II.
View Article and Find Full Text PDFA hyperthermophilic Thermotoga sp. strain PD524 was isolated from a hot spring in Northern Thailand. Cells were long-curved rods (0.
View Article and Find Full Text PDFHere, we present the complete genome sequence of Thermodesulfobacterium commune DSM 2178(T) of the phylum Thermodesulfobacteria.
View Article and Find Full Text PDFHere, we present the complete 2,003,803-bp genome of a sulfate-reducing thermophilic bacterium, Thermodesulfovibrio yellowstonii strain DSM 11347(T).
View Article and Find Full Text PDFChaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions.
View Article and Find Full Text PDFHere we present the draft genome of Synergistes jonesii 78-1, ATCC 49833, a member of the Synergistes phylum. This organism was isolated from the rumen of a Hawaiian goat and ferments pyridinediols. The assembly contains 2,747,397 bp in 61 contigs.
View Article and Find Full Text PDFHere we present the complete 1,424,912-bp genome sequence of Coprothermobacter proteolyticus DSM 5265, isolated from a thermophilic digester fermenting tannery wastes and cattle manure.
View Article and Find Full Text PDFHere, we present the complete genome of the extreme thermophile, Dictyoglomus thermophilum H-6-12 (phylum Dictyoglomi), which consists of 1,959,987 bp.
View Article and Find Full Text PDFHere we present the draft genome sequence of Chrysiogenes arsenatis strain DSM 11915, only the second genome sequence from the phylum Chrysiogenetes. This strictly anaerobic organism was isolated from arsenic-contaminated gold mine wastewater and respires arsenate or nitrate instead of oxygen. The assembly contains 2,824,977 bp in 22 scaffolds.
View Article and Find Full Text PDFOur group recently determined that a mutant archaeal chaperonin (Hsp 60) exhibited substantially enhanced protein folding activity at low temperatures and was able to deconstruct refractory protein aggregates. ATP dependent conversion of fibril structures into amorphous aggregates was observed in insulin amyloid preparations (Kurouski et al. Biochem.
View Article and Find Full Text PDF