Patients with relapsed/refractory chronic lymphocytic leukemia (R/R CLL) whose treatment failed with a Bruton's tyrosine kinase inhibitor have poor outcomes. We investigated tafasitamab plus idelalisib (cohort A) or venetoclax (cohort B) in this patient population in a phase II study (NCT02639910). In total, 24 patients were enrolled (cohort A: = 11, median time on study, 7.
View Article and Find Full Text PDFPosttranslational modifications in the form of covalently attached proteins like ubiquitin (Ub), were long considered an exclusive feature of eukaryotic organisms. The discovery of pupylation, the modification of lysine residues with a prokaryotic, ubiquitin-like protein (Pup), demonstrated that certain bacteria use a tagging pathway functionally related to ubiquitination in order to target proteins for proteasomal degradation. However, functional analogies do not translate into structural or mechanistic relatedness.
View Article and Find Full Text PDFPupylation is a bacterial post-translational modification of target proteins on lysine residues with prokaryotic ubiquitin-like protein Pup. Pup-tagged substrates are recognized by a proteasome-interacting ATPase termed Mpa in Mycobacterium tuberculosis. Mpa unfolds pupylated substrates and threads them into the proteasome core particle for degradation.
View Article and Find Full Text PDFPost-translational modification of proteins with prokaryotic ubiquitin-like protein (Pup) is the bacterial equivalent of ubiquitination in eukaryotes. Mycobacterial pupylation is a two-step process in which the carboxy-terminal glutamine of Pup is first deamidated by Dop (deamidase of Pup) before ligation of the generated γ-carboxylate to substrate lysines by the Pup ligase PafA. In this study, we identify a new feature of the pupylation system by demonstrating that Dop also acts as a depupylase in the Pup proteasome system in vivo and in vitro.
View Article and Find Full Text PDFMycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin-like protein (Pup) that is recognized by the N-terminal coiled-coil domain of the ATPase Mpa (also called ARC). Here, we reconstitute the entire mycobacterial proteasome degradation system for pupylated substrates and establish its mechanistic features with respect to substrate recruitment, unfolding and degradation.
View Article and Find Full Text PDFProteasome-bearing bacteria make use of a ubiquitin-like modification pathway to target proteins for proteasomal turnover. In a process termed pupylation, proteasomal substrates are covalently modified with the small protein Pup that serves as a degradation signal. Pup is attached to substrate proteins by action of PafA.
View Article and Find Full Text PDFThe mycobacterial ubiquitin-like protein Pup is coupled to proteins, thereby rendering them as substrates for proteasome-mediated degradation. The Pup-tagged proteins are recruited by the proteasomal ATPase Mpa (also called ARC). Using a combination of biochemical and NMR methods, we characterize the structural determinants of Pup and its interaction with Mpa, demonstrating that Pup adopts a range of extended conformations with a short helical stretch in its C-terminal portion.
View Article and Find Full Text PDFChaperone-proteases are responsible for the processive breakdown of proteins in eukaryotic, archaeal and bacterial cells. They are composed of a cylinder-shaped protease lined on the interior with proteolytic sites and of ATPase rings that bind to the apical sides of the protease to control substrate entry. We present a real-time FRET-based method for probing the reaction cycle of chaperone-proteases, which consists of substrate unfolding, translocation into the protease and degradation.
View Article and Find Full Text PDFIn analogy to ubiquitin in eukaryotes, the bacterial protein Pup is attached to lysine residues of substrate proteins, thereby targeting them for proteasomal degradation. It has been proposed that, before its attachment, Pup is modified by deamidation of its C-terminal glutamine to glutamate. Here we have identified Dop (locus tag Rv2112) as the specific deamidase of Pup in Mycobacterium tuberculosis.
View Article and Find Full Text PDFCurr Opin Struct Biol
April 2009
Energy-dependent protein degradation is carried out by bipartite assemblies of conserved architecture. A chaperone ring comprising ATPase domains of the AAA+ -type caps both ends of a hollow protease cylinder, thereby controlling access to the active sites. Hydrolysis of ATP is translated into a force that unfolds substrates and translocates them into the protease.
View Article and Find Full Text PDFATP-dependent protein degradation in bacteria is carried out by barrel-shaped proteases architecturally related to the proteasome. In Escherichia coli, ClpP interacts with two alternative ATPases, ClpA or ClpX, to form active protease complexes. ClpAP and ClpXP show different but overlapping substrate specificities.
View Article and Find Full Text PDFThe thermal decomposition of acetaldehyde, CH3CHO + M --> CH3 + HCO + M (eq 1), and the reaction CH3CHO + H --> products (eq 6) have been studied behind reflected shock waves with argon as the bath gas and using H-atom resonance absorption spectrometry as the detection technique. To suppress consecutive bimolecular reactions, the initial concentrations were kept low (approximately 10(13) cm(-3)). Reaction was investigated at temperatures ranging from 1250 to 1650 K at pressures between 1 and 5 bar.
View Article and Find Full Text PDFThe kinetics of the thermal unimolecular decomposition of the cyclohexoxy radical (c-C(6)H(11)O) was experimentally studied, and the results were analyzed in terms of statistical rate theory with molecular and transition state data from quantum chemical calculations. Laser flash photolysis of cyclohexylnitrite at 351 nm was used to produce c-C(6)H(11)O radicals, and their concentration was monitored by laser-induced fluorescence after excitation at 356.2 or 365.
View Article and Find Full Text PDFThe kinetics of the reaction of hydrogen atoms with propyne (pC3H4) was experimentally studied in a shock tube at temperatures ranging from 1200 to 1400 K and pressures between 1.3 and 4.0 bar with Ar as the bath gas.
View Article and Find Full Text PDFInfiltration of human immunodeficiency virus type 1 (HIV-1)-infected and uninfected monocytes/macrophages in organs and tissues is a general phenomenon observed in progression of acquired immunodeficiency syndrome (AIDS). HIV-1 protein Nef is considered as a progression factor in AIDS, and is released from HIV-1-infected cells. Here, we show that extracellular Nef increases migration of monocytes.
View Article and Find Full Text PDFWe present the first direct study on the thermal unimolecular decomposition of allyl radicals. Experiments have been performed behind shock waves, and the experimental conditions covered temperatures ranging from 1125 K up to 1570 K and pressures between 0.25 and 4.
View Article and Find Full Text PDFSelenoproteins are central controllers of cellular redox homeostasis. Incorporation of selenocysteine (Sec) into selenoproteins employs a unique mechanism to decode the UGA stop codon. The process requires the Sec insertion sequence (SECIS) element, tRNASec, and protein factors including the SECIS binding protein 2 (SBP2).
View Article and Find Full Text PDFHigh pressure experiments on the OH + NO2 reaction are presented for 3 different temperatures. At 300 K, experiments in He (p = 2-500 bar) as well as in Ar (p = 2-4 bar) were performed. The rate constants obtained in Ar agree well with values which have been reported earlier by our group (Forster, R.
View Article and Find Full Text PDFLigation of Toll-like receptors (TLR) on macrophages induces cytokines and mediators important for the control of pathogens. Macrophage activation has to be tightly controlled to prevent hyper-inflammation. Accordingly, the hallmarks of TLR-triggered signaling, nuclear translocation of NF-kappaB and phosphorylation of mitogen-activated protein kinases (MAPK), are transient events.
View Article and Find Full Text PDF