Sulfuric acid represents a fundamental precursor for new nanometre-sized atmospheric aerosol particles. These particles, after subsequent growth, may influence Earth´s radiative forcing directly, or indirectly through affecting the microphysical and radiative properties of clouds. Currently considered formation routes yielding sulfuric acid in the atmosphere are the gas-phase oxidation of SO initiated by OH radicals and by Criegee intermediates, the latter being of little relevance.
View Article and Find Full Text PDFEnvironmental monitoring involves the quantification of microscopic cells and particles such as algae, plant cells, pollen, or fungal spores. Traditional methods using conventional microscopy require expert knowledge, are time-intensive and not well-suited for automated high throughput. Multispectral imaging flow cytometry (MIFC) allows measurement of up to 5000 particles per second from a fluid suspension and can simultaneously capture up to 12 images of every single particle for brightfield and different spectral ranges, with up to 60x magnification.
View Article and Find Full Text PDFA method using ion chromatography coupled to high-resolution Orbitrap mass spectrometry was developed to quantify highly-polar organic compounds in aqueous filter extracts of atmospheric particles. In total, 43 compounds, including short-chain carboxylic acids, terpene-derived acids, organosulfates, and inorganic anions were separated within 33 min by a KOH gradient. Ionization by electrospray was maximized by adding 100 µL min isopropanol as post-column solvent and optimizing the ion source settings.
View Article and Find Full Text PDFRecent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chemical information is still sparse. In the present study, INA and free glucose concentrations were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack.
View Article and Find Full Text PDFIce-nucleating particles (INPs) associated with fresh waters are a neglected, but integral component of the water cycle. Abundant INPs were identified from surface waters of both the Maumee River and Lake Erie with ice nucleus spectra spanning a temperature range from -3 to -15 °C. The majority of river INPs were submicron in size and attributed to biogenic macromolecules, inferred from the denaturation of ice-nucleation activity by heat.
View Article and Find Full Text PDFCloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.
View Article and Find Full Text PDFExplaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process.
View Article and Find Full Text PDFAtmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role.
View Article and Find Full Text PDFThe gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO).
View Article and Find Full Text PDFStabilized Criegee Intermediates (sCIs) have been identified as oxidants of atmospheric trace gases such as SO2, NO2, carboxylic acids or carbonyls. The atmospheric sCI concentrations, and accordingly their importance for trace gas oxidation, are controlled by the rate of the most important loss processes, very likely the unimolecular reactions and the reaction with water vapour (monomer and dimer) ubiquitously present at high concentrations in the troposphere. In this study, the rate coefficients of the unimolecular reaction of the simplest sCI, formaldehyde oxide, CH2OO, and its bimolecular reaction with the water monomer have been experimentally determined at T = (297 ± 1) K and at atmospheric pressure by using a free-jet flow system.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2014
Gas-phase oxidation routes of biogenic emissions, mainly isoprene and monoterpenes, in the atmosphere are still the subject of intensive research with special attention being paid to the formation of aerosol constituents. This laboratory study shows that the most abundant monoterpenes (limonene and α-pinene) form highly oxidized RO2 radicals with up to 12 O atoms, along with related closed-shell products, within a few seconds after the initial attack of ozone or OH radicals. The overall process, an intramolecular ROO→QOOH reaction and subsequent O2 addition generating a next R'OO radical, is similar to the well-known autoxidation processes in the liquid phase (QOOH stands for a hydroperoxyalkyl radical).
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2014
H2SO4 formation from the reaction CH2OO + SO2 has been measured as a function of the water vapour concentration for close to atmospheric conditions. Second-order kinetics with regard to water indicates a preferred reaction of CH2OO with the water dimer. The obtained kinetic parameters lead to the conclusion that the atmospheric fate of CH2OO is dominated by the reaction with water vapour.
View Article and Find Full Text PDFAtmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere.
View Article and Find Full Text PDFAtmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia.
View Article and Find Full Text PDFSulfuric acid is a key compound in atmospheric nucleation. Here we report on the observation of a close-to-collision-limited sulfuric acid dimer formation in atmospherically relevant laboratory conditions in the absence of measurable quantities of ammonia or organics. The observed dimer formation rate was clearly higher than the measured new particle formation rate at ∼1.
View Article and Find Full Text PDFA major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions.
View Article and Find Full Text PDFNucleation is a fundamental step in atmospheric new-particle formation. However, laboratory experiments on nucleation have systematically failed to demonstrate sulfuric acid particle formation rates as high as those necessary to account for ambient atmospheric concentrations, and the role of sulfuric acid in atmospheric nucleation has remained a mystery. Here, we report measurements of new particles (with diameters of approximately 1.
View Article and Find Full Text PDFHygroscopic properties of secondary organic aerosol (SOA) formed by photooxidation of different concentrations (10-27 or 220-270 ppb) of alpha-pinene precursor were investigated at different relative humidities (RH) using a hygroscopicity tandem differential mobility analyzer (HTDMA, RH=95-97%) and using the mobile version of the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, RH=98-99.3%). In addition, the cloud condensation nuclei (CCN) activity was measured applying two CCN counters (CCNC).
View Article and Find Full Text PDFThis work is an assessment of the capabilities of the FLUENT-FPM software package to simulate actual nucleation experiments. In the first step, we verified the FPM condensation routine with the NEWALC code. Next, homogeneous nucleation of n-butanol, n-pentanol, and n-hexanol in a laminar flow diffusion chamber (LFDC) was simulated and the results were compared to experimental data and an earlier model, which was described by Lihavainen and Viisanen (2001) and will be called femtube2 in the following.
View Article and Find Full Text PDFKinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory.
View Article and Find Full Text PDF