trying...
175 1 0 1 MCID_676f08609554e7b95a09cff6
39601631
Frank Seela[author] Seela, Frank[Full Author Name] seela, frank[Author]
trying2... trying...
39601631 2024 11 27 1521-3765 2024 Nov 27 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry α-D NUCLEOSIDE BASED SELF-HEALING SUPRAMOLECULAR HYDROGELS DERIVED FROM THE α-D ANOMERS OF 2'-DEOXYGUANOSINE AND FLUORESCENT 8-AZAPURINE 2'-DEOXYRIBOFURANOSIDES. e202403282 e202403282 10.1002/chem.202403282 Self-assembly of α-D nucleosides to supramolecular hydrogels is described in detail. Hydrogel formation was studied on α-D 2'-deoxyguanosine (α-dG), and the fluorescent 8-azapurine α-D nucleosides 2-amino-8-aza-2'-deoxyadenosine (α-2-NH2-z8Ad) and 8-aza-2'-deoxyisoguanosine (α-z8iGd). These compounds were prepared from α-D 8-aza-2'-deoxyguanosine by an activation/amination protocol followed by deamination. Protonation and deprotonation pKa values of monomeric nucleosides were determined. Fluorescence measurements displayed the pH-dependent fluorescence intensity of α-D 8-azapurine nucleosides. α-dG and α-z8iGd self-assemble to gels that are selective for K+-ions. The α-dG gel is transparent and the α-z8iGd gel shows fluorescence. α-2-NH2-z8Ad forms fluorescent gels in the presence of alkali metal ions of different size. SEM images exposed a large condensed and flat structure for the α-dG gel, whereas the α-2-NH2-z8Ad gel consists of flakes that are connected to bundles. A porous structure generated by helical cylindric fibers was found for the α-z8iGd gel. All α-D hydrogels showed long-term lifetime stability. The α-z8iGd hydrogel in KCl solution has the highest Tgel value. The minimum gelation concentration of the hydrogels was 0.3-0.5 mg nucleoside/100 µL alkali ion solution. In periodical step-strain experiments, the hydrogels of α-dG and α-2-NH2-z8Ad and α-z8iGd displayed thixotropy. Based on their self-healing and shear-thinning properties the hydrogels are injectable. © 2024 Wiley‐VCH GmbH. Deshmukh Sushma S Center for Nanotechnology, Laboratory of Bioorganic Chemistry and Chemical Biology, Heisenbergstrasse, 11, 48149, Münster, GERMANY. Budow-Busse Simone S Center for Nanotechnology, Laboratory of Bioorganic Chemistry and Chemical Biology, Heisenbergstrasse, 11, 48149, Münster, GERMANY. Kondhare Dasharath D Center for Nanotechnology, Laboratory of Bioorganic Chemistry and Chemical Biology, Heisenbergstrasse, 11, 48149, Münster, GERMANY. Schäfer Andreas H AH Center for Nanotechnology, nanoAnalytics GmbH, Heisenbergstrasse, 11, 48149, Münster, GERMANY. Leonard Peter P Center for Nanotechnology, Laboratory of Bioorganic Chemistry and Chemical Biology, Heisenbergstrasse 11, 48149, Münster, GERMANY. Seela Frank F Universität Osnabrück, Institut für Chemie neuer Materialien, Barbarastrasse 7, 49069, Osnabrück, GERMANY. eng Journal Article 2024 11 27 Germany Chemistry 9513783 0947-6539 IM Fluorescent Hydrogels Rheology Scanning Electron Microscopy alpha-D 2'-Deoxyguanosine alpha-D 8-Azapurine-2'-deoxyribonucleosides 2024 11 27 2024 9 2 2024 11 27 2024 11 27 12 34 2024 11 27 12 34 2024 11 27 9 33 aheadofprint 39601631 10.1002/chem.202403282 39088564 2024 08 21 2024 11 01 1520-4812 35 8 2024 Aug 21 Bioconjugate chemistry Bioconjug Chem 7-Deaza-2'-deoxyisoguanosine, a Noncanonical Nucleoside for Nucleic Acid Code Expansion and New DNA Constructs: Nucleobase Functionalization of Inverse Watson-Crick and Purine-Purine Base Pairs. 1233 1250 1233-1250 10.1021/acs.bioconjchem.4c00290 7-Deaza-2'-deoxyisoguanosine forms stable inverse Watson-Crick base pairs with 5-methyl-2'-deoxyisocytidine and purine-purine base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine. Both base pairs expand the genetic coding system. The manuscript reports on the functionalization of these base pairs with halogen atoms and clickable side chains introduced at 7-position of the 7-deazapurine base. Oligonucleotides containing the functionalized base pairs were prepared by solid-phase synthesis. To this end, a series of phosphoramidites were synthesized and clickable side chains with short and long linkers were incorporated in oligonucleotides. Fluorescent pyrene conjugates were obtained by postmodification. Functionalization of DNA with a single inverse Watson-Crick base pair by halogens or clickable residues has only a minor impact on duplex stability. Pyrene click adducts increase (long linker) or decrease (short linker) the double helix stability. Stable hybrid duplexes were constructed containing three consecutive purine-purine pairs of 7-functionalized 7-deaza-2'-deoxyisoguanine with guanine or 5-aza-7-deazaguanine in the center and Watson-Crick pairs at both ends. The incorporation of a hybrid base pair tract of 7-deaza-2'-deoxyisoguanosine/5-aza-7-deaza-2'-deoxyguanosine pairs stabilizes the double helix strongly. Fluorescence intensity of pyrene short linker adducts increased when the 7-deazapurine base was positioned opposite to 5-methylisocytosine (inverse base pair) compared to purine-purine base pairs with guanine or 5-aza-7-deazaguanine in opposite positions. For long liker adducts, the situation is more complex. Circular dichroism (CD) spectra of purine DNA differ to those of Watson-Crick double helices and are indicative for the new DNA constructs. The impact of 7-deaza-2'-deoxyisoguanine base pair functionalization is studied for the first time and all experimental details are reported to prepare DNA functionalized at the 7-deazaisoguanine site. The influence of single and multiple incorporations on DNA structure and stability is shown. Clickable residues introduced at the 7-position of the 7-deazaisoguanine base provide handles for Huisgen-Sharpless-Meldal click cycloadditions without harming the stability of purine-pyrimidine and purine-purine base pairs. Other chemistries might be used for bioconjugation. Our investigation paves the way for the functionalization of a new DNA related recognition system expanding the common Watson-Crick regime. Xia Zhenqiang Z Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Budow-Busse Simone S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2024 08 01 United States Bioconjug Chem 9010319 1043-1802 0 Purines 9007-49-2 DNA 12133JR80S Guanosine 0 Pyrenes W60KTZ3IZY purine 0 Oligonucleotides G9481N71RO Deoxyguanosine IM Base Pairing Purines chemistry DNA chemistry Guanosine chemistry analogs & derivatives Pyrenes chemistry Oligonucleotides chemistry Deoxyguanosine chemistry analogs & derivatives 2024 8 21 11 41 2024 8 1 18 43 2024 8 1 13 54 ppublish 39088564 10.1021/acs.bioconjchem.4c00290 39052894 2024 08 16 2024 10 10 1520-6904 89 16 2024 Aug 16 The Journal of organic chemistry J Org Chem 7-Deazapurine and Pyrimidine Nucleoside and Oligonucleotide Cycloadducts Formed by Inverse Diels-Alder Reactions with 3,6-Di(pyrid-2-yl)-1,2,4,5-tetrazine: Ethynylated and Vinylated Nucleobases for Functionalization and Impact of Pyridazine Adducts on DNA Base Pair Stability and Mismatch Discrimination. 11304 11322 11304-11322 10.1021/acs.joc.4c00982 The manuscript reports on 7-deazapurine and pyrimidine nucleoside and oligonucleotide cycloadducts formed by the inverse electron demand Diels-Alder (iEDDA) reaction with 3,6-di(pyrid-2-yl)-1,2,4,5-tetrazine. Cycloadducts were constructed from ethynylated and vinylated nucleobases. Oligonucleotides were synthesized containing iEDDA modifications, and the impact on duplex stability was investigated. iEDDA reactions were performed on nucleoside triple bond side chains. Oxidation was not required in these cases as dihydropyridazine intermediates are not formed. In contrast, oxidation is necessary for reactions performed on alkenyl compounds. This was verified on 5-vinyl-2'-deoxyuridine. A diastereomeric mixture of 1,2-dihydropyridazine cycloadduct intermediates was isolated, characterized, and later oxidized. 12-mer oligonucleotides containing 1,2-pyridazine inverse Diels-Alder cycloadducts and their precursors were hybridized to short DNA duplexes. For that, a series of phosphoramidites was prepared. DNA duplexes with 7-functionalized 7-deazaadenines and 5-functionalized pyrimidines display high duplex stability when spacer units are present between nucleobases and pyridazine cycloadducts. A direct connectivity of the pyridazine moiety to nucleobases as reported for metabolic labeling of vinyl nucleosides reduced duplex stability strongly. Oligonucleotides bearing linkers with and without pyridazine cycloadducts attached to the 7-deazaadenine nucleobase significantly reduced mismatch formation with dC and dG. Chandankar Somnath Shivaji SS 0000-0001-6800-0718 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Deshmukh Sushma S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Yang Haozhe H Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2024 07 25 United States J Org Chem 2985193R 0022-3263 0 Pyridazines 0 7-deazapurine 0 Oligonucleotides 0 Purines 0 Pyrimidine Nucleosides 9007-49-2 DNA 449GLA0653 pyridazine IM Pyridazines chemistry Oligonucleotides chemistry Cycloaddition Reaction Base Pairing Purines chemistry Molecular Structure Pyrimidine Nucleosides chemistry DNA chemistry Base Pair Mismatch 2024 8 16 6 42 2024 7 26 12 43 2024 7 25 15 3 ppublish 39052894 10.1021/acs.joc.4c00982 38252461 2024 02 07 2024 05 15 2053-2296 80 Pt 2 2024 Feb 01 Acta crystallographica. Section C, Structural chemistry Acta Crystallogr C Struct Chem α-D-2'-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis. 21 29 21-29 10.1107/S2053229624000457 α-D-2'-Deoxyribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-D-2'-deoxyadenosine (α-dA), C10 H13 N5 O3 , and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydrogen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydrogen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydrogen bonds formed by the conformers. The formation of the supramolecular assembly of α-dA is controlled by hydrogen bonding and stacking interactions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydrogen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydrogen bonds involving the sugar moieties to form a sheet. A comparison of the solid-state structures of the anomeric 2'-deoxyadenosines revealed significant differences of their conformational parameters. open access. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Budow-Busse Simone S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Daniliuc Constantin C 0000-0002-6709-3673 Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany. Seela Frank F Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2024 01 22 England Acta Crystallogr C Struct Chem 101620313 2053-2296 0 Nucleic Acids P582C98ULC 2'-deoxyadenosine 9007-49-2 DNA 0 Sugars 0 Deoxyadenosines IM Nucleic Acids chemistry Models, Molecular Hydrogen Bonding Crystallography, X-Ray DNA chemistry Sugars Deoxyadenosines Hirshfeld surface analysis anomer crystal packing crystal structure nucleoside α-2′-deoxyadenosine 2023 12 4 2024 1 11 2024 2 7 6 42 2024 1 22 12 43 2024 1 22 11 44 2024 1 22 ppublish 38252461 PMC10844955 10.1107/S2053229624000457 S2053229624000457 Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. 5079964 Amato, N. J. & Wang, Y. (2014). Chem. Res. Toxicol. 27, 470–479. PMC4002128 24517165 Aramini, J. M., Cleaver, S. H., Pon, R. T., Cunningham, R. P. & Germann, M. W. (2004). J. Mol. Biol. 338, 77–91. 15050824 Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA. Budow-Busse, S., Chai, Y., Müller, S. L., Daniliuc, C. & Seela, F. (2021). Acta Cryst. C77, 202–208. PMC8097964 33949335 Chai, Y., Guo, X., Leonard, P. & Seela, F. (2020). Chem. Eur. J. 26, 13973–13989. PMC7702046 32667103 Ciuffreda, P., Casati, S. & Manzocchi, A. (2007). Magn. Reson. Chem. 45, 781–784. 17640032 Görbitz, C. H., Nelson, W. H. & Sagstuen, E. (2005). Acta Cryst. E61, o1207–o1209. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. PMC4822653 27048719 Hamor, T. A., O’Leary, M. K. & Walker, R. T. (1977). Acta Cryst. B33, 1218–1223. Hoffer, M. (1960). Chem. Ber. 93, 2777–2781. Ide, H., Shimizu, H., Kimura, Y., Sakamoto, S., Makino, K., Glackin, M., Wallace, S. S., Nakamuta, H., Sasaki, M. & Sugimoto, N. (1995). Biochemistry, 34, 6947–6955. 7766604 IUPAC–IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9–15. 6832147 Johnson, C. N., Spring, A. M., Desai, S., Cunningham, R. P. & Germann, M. W. (2012). J. Mol. Biol. 416, 425–437. PMC3479675 22227386 Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. PMC4453166 26089746 Latha, Y. S. & Yathindra, N. (1992). Biopolymers, 32, 249–269. 1581546 Lesiak, K. B. & Wheeler, K. T. (1990). Radiat. Res. 121, 328–337. 2315449 Morvan, F., Rayner, B., Imbach, J.-L., Chang, D.-K. & Lown, J. W. (1987a). Nucleic Acids Res. 15, 4241–4255. PMC340845 3588292 Morvan, F., Rayner, B., Imbach, J.-L., Lee, M., Hartley, J. A., Chang, D.-K. & Lown, J. W. (1987b). Nucleic Acids Res. 15, 7027–7044. PMC306190 3658672 Ness, R. K. (1968). In Synthetic Procedures in Nucleic Acid Chemistry, edited by W. W. Zorbach & R. S. Tipson, pp. 183–187. New York: Interscience Publishers. Ness, R. K. & Fletcher, H. G. Jr (1960). J. Am. Chem. Soc. 82, 3434–3436. Ni, G., Du, Y., Tang, F., Liu, J., Zhao, H. & Chen, Q. (2019). RSC Adv. 9, 14302–14320. PMC9064229 35519323 Paoletti, J., Bazile, D., Morvan, F., Imbach, J.-L. & Paoletti, C. (1989). Nucleic Acids Res. 17, 2693–2704. PMC317651 2717407 Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. PMC3661305 23719469 Putz, H. & Brandenburg, K. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany. Retailleau, P., Ishchenko, A. A., Kuznetsov, N. A., Saparbaev, M. & Moréra, S. (2010). Acta Cryst. F66, 798–800. PMC2898464 20606276 Robins, M. J. & Robins, R. K. (1965). J. Am. Chem. Soc. 87, 4934–4940. 5844465 Saenger, W. (1984). In Principles of Nucleic Acid Structure, edited by C. R. Cantor. New York: Springer-Verlag. Sato, T. (1984). Acta Cryst. C40, 880–882. Seela, F., Rosemeyer, H., Melenewski, A., Heithoff, E.-M., Eickmeier, H. & Reuter, H. (2002). Acta Cryst. C58, o142–o144. 11870307 Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Shinozuka, K., Hirota, Y., Morita, T. & Sawai, H. (1992). Heterocycles, 34, 2117–2121. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Sundaralingam, M. (1971). J. Am. Chem. Soc. 93, 6644–6647. 5122780 Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.net/. Watson, D. G., Sutor, D. J. & Tollin, P. (1965). Acta Cryst. 19, 111–124. 5896865 Zhang, A., Kondhare, D., Leonard, P. & Seela, F. (2022b). Chem. Eur. J. 28, e202201294. PMC9543212 35652726 Zhang, A., Leonard, P. & Seela, F. (2022a). Chem. Eur. J. 28, e202103872. PMC9304229 34878201 38227281 2024 02 02 1520-6904 89 3 2024 Feb 02 The Journal of organic chemistry J Org Chem Nucleobase-Functionalized 7-Deazaisoguanine and 7-Deazapurin-2,6-diamine Nucleosides: Halogenation, Cross-Coupling, and Cycloaddition. 1807 1822 1807-1822 10.1021/acs.joc.3c02514 The functionalization in position-7 of 7-deazaisoguanine and 7-deazapurin-2,6-diamine ribo- and 2'-deoxyribonucleosides by halogen atoms (chloro, bromo, iodo), and clickable alkynyl and vinyl side chains for copper-catalyzed and copper-free cycloadditions is described. Problems arising during the synthesis of the 7-iodinated isoguanine ribo- and 2'-deoxyribonucleosides were solved by the action of acetone. The impact of side chains and halogen atoms on the pK a values and hydrophobicity of nucleosides was investigated. Halogenated substituents increase the lipophilic character of nucleosides in the order Cl < Br < I and decrease the pK values of protonation. Photophysical properties (fluorescence, solvatochromism, and quantum yields) of azide-alkyne click adducts bearing pyrene as sensor groups were determined. Pyrene fluorescence was solvent-dependent and changed according to the linker lengths. Excimer emission was observed in dioxane for the long linker adduct. Bioorthogonal inverse-electron-demanding Diels-Alder cycloadditions (iEDDA) were conducted on the electron-rich vinyl groups of 7-deazaisoguanine and 7-deazapurin-2,6-diamine nucleosides as dienophiles and 3,6-dipyridyl-1,2,4,5-tetrazine as diene. The initially formed complex reaction mixture of isomers could be easily oxidized with iodine in tetrahydrofuran (THF)/pyridine leading to single aromatic tetrazine adducts within a short time and in excellent yields. Xia Zhenqiang Z Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Chandankar Somnath Shivaji SS 0000-0001-6800-0718 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Ingale Sachin A SA Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article 2024 01 16 United States J Org Chem 2985193R 0022-3263 IM 2024 1 16 13 43 2024 1 16 13 42 2024 1 16 11 23 ppublish 38227281 10.1021/acs.joc.3c02514 37669119 2023 09 18 2023 10 03 1520-6904 88 18 2023 Sep 15 The Journal of organic chemistry J Org Chem Purine DNA Constructs Designed to Expand the Genetic Code: Functionalization, Impact of Ionic Forms, and Molecular Recognition of 7-Deazaxanthine-7-Deazapurine-2,6-diamine Base Pairs and Their Purine Counterparts. 13149 13168 13149-13168 10.1021/acs.joc.3c01370 Purine DNA represents an alternative pairing system formed by two purines in the base pair with the recognition elements of Watson-Crick DNA. Base functionalization of 7-deaza-2'-deoxyxanthosine with ethynyl and octadiynyl residues led to clickable side chain derivatives with short and long linker arms. As complementary bases, purine-2,6-diamine or 7-deazapurine-2,6-diamine 2'-deoxyribonucleosides were used. 7-Deaza-7-iodo-2'-deoxyxanthosine served as a starting material for Sonogashira cross-coupling and the p -nitrophenylethyl group for base protection. Phosphoramidite building blocks for DNA synthesis were prepared. Oligonucleotides containing single modifications or runs of three purine base pairs embedded in 12-mer Watson-Crick DNA were synthesized and hybridized with complementary strands with purine- or 7-deazapurine-2,6-diamine located opposite to the xanthine derivatives. The stability of base pairs was evaluated in a comparative study on the basis of DNA melting experiments and T m values. As 7-deazaxanthine and xanthine nucleosides form anionic forms at neutral pH, duplex stability became pK -dependent, and the system with 7-deazapurine displayed a significant higher stability as that containing xanthine. Alkynyl side chains are well accommodated in the purine-purine helix. Click adducts with pyrene showed that short linker arms destabilize duplexes, whereas long linkers increase duplex stability. CD and fluorescence measurements provide further insights into purine-purine base pairing. Chandankar Somnath Shivaji SS 0000-0001-6800-0718 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article 2023 09 05 United States J Org Chem 2985193R 0022-3263 W60KTZ3IZY purine 0 7-deazapurine 0 7-deazaxanthine 0 Purines 1AVZ07U9S7 Xanthine 0 Diamines 0 Ions IM Base Pairing Genetic Code Purines Xanthine Diamines Ions 2023 9 18 12 42 2023 9 5 18 41 2023 9 5 12 12 ppublish 37669119 10.1021/acs.joc.3c01370 37427799 2023 07 21 2023 07 21 1520-4812 34 7 2023 Jul 19 Bioconjugate chemistry Bioconjug Chem Watson-Crick Base Pairs with Protecting Groups: The 2-Amino Groups of Purine- and 7-Deazapurine-2,6-Diamine as Target Sites for DNA Functionalization by Selective Nucleobase Acylation. 1290 1303 1290-1303 10.1021/acs.bioconjchem.3c00169 The recognition of Watson-Crick base pairs carrying nucleobase protecting groups is reported as a new approach for DNA functionalization. The 2-amino groups of purine- and 7-deazapurine-2,6-diamine 2'-deoxyribonucleosides served as molecular targets for this functionalization. The 2-amino group withstands oligonucleotide deprotection with ammonia, whereas all other protecting groups are released after chemical DNA synthesis. On this basis, a method was developed for the selective functionalization of oligonucleotides at the 2-position of purines and 7-deazapurines. Melting experiments and T m values obtained from hybridization studies revealed that duplexes with protected (2-amino-dA) and (2-amino-7-deaza-dA)-dT base pairs are as stable as their nonprotected counterparts. Mismatch discrimination of protected purine- and 7-deazapurine-2,6-diamine DNA was superior to that of nonprotected DNA. Click functionalization in the minor groove of the DNA double helix became accessible via introduction of heptynoyl protecting groups bearing a terminal triple bond. Click reactions with pyrene azide validated the usability. DNA conjugates with bulky pyrene residues at the 2-position (minor groove) developed the same high stability as those functionalized at the 7-position (major groove). This demonstrates the potential of our new method using protected base pairs for DNA functionalization and paves the way for new DNA labeling strategies. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Heddinga Xenia X Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2023 07 10 United States Bioconjug Chem 9010319 1043-1802 W60KTZ3IZY purine 0 7-deazapurine 0 Purines 9007-49-2 DNA 0 Oligonucleotides 0 Pyrenes IM Base Pairing Purines chemistry DNA chemistry Oligonucleotides chemistry Pyrenes Nucleic Acid Conformation 2023 7 21 6 44 2023 7 10 13 5 2023 7 10 7 33 ppublish 37427799 10.1021/acs.bioconjchem.3c00169 36735859 2023 02 16 2023 03 09 1520-4812 34 2 2023 Feb 15 Bioconjugate chemistry Bioconjug Chem The Base Pairs of Isoguanine and 8-Aza-7-deazaisoguanine with 5-Methylisocytosine as Targets for DNA Functionalization. 422 432 422-432 10.1021/acs.bioconjchem.2c00584 The isoguanine-isocytosine base pair (isoG-isoC) represents an important expansion of the DNA coding system. The base pair is more stable than the canonical adenine-thymine or guanine-cytosine pairs. However, nothing is known on the functionalization of the noncanonical isoG-isoC pair at the isoguanine site. In this work, functionalization of the isoG-isoC and the isosteric base pair that contains 8-aza-7-deazaisoguanine in place of isoguanine is studied. Short ethynyl, more space demanding octadiynyl, and dendritic tripropargylamine residues attached to the isoG-isoC base pairs were introduced to oligonucleotides. 12-mer duplexes were formed by hybridization with single base pair modification. The use of the two modified nucleobases gave us the freedom to shift nucleobase substituents within the major groove of double helical DNA. Clickable side chains at position-7 stabilize the base pair, whereas 8-substituents reduce its stability strongly. The weak isoguanine-thymine or 8-aza-7-deazaisoguanine-thymine base pairs show a similar sensitivity to the position of nucleobase functionalization as base pair matches formed with 5-methylisocytosine. CD spectra of all modified duplexes display the typical shape of a B-DNA with only marginal changes. Fluorescent pyrene labeled DNA with long, short, and branched linkers was generated using click chemistry. Pyrene click adducts with long linkers are essential to maintain or to increase base pair stability. Labeled duplexes are more fluorescent than corresponding single strands. For the dendritic linker excimer emission was observed for single strands but only monomer emission in duplexes. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article 2023 02 03 United States Bioconjug Chem 9010319 1043-1802 0 7-deazaisoguanine E335PK4428 isoguanine QR26YLT7LT Thymine 9007-49-2 DNA 5Z93L87A1R Guanine 0 Pyrenes IM Base Pairing Thymine DNA chemistry Guanine chemistry Pyrenes Nucleic Acid Conformation 2023 2 4 6 0 2023 2 17 6 0 2023 2 3 15 2 ppublish 36735859 10.1021/acs.bioconjchem.2c00584 36178316 2022 12 29 2024 09 16 1521-3765 28 72 2022 Dec 27 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry DNA Strand Displacement with Base Pair Stabilizers: Purine-2,6-Diamine and 8-Aza-7-Bromo-7-Deazapurine-2,6-Diamine Oligonucleotides Invade Canonical DNA and New Fluorescent Pyrene Click Sensors Monitor the Reaction. e202202412 e202202412 e202202412 10.1002/chem.202202412 Purine-2,6-diamine and 8-aza-7-deaza-7-bromopurine-2,6-diamine 2'-deoxyribonucleosides (1 and 2) were implemented in isothermal DNA strand displacement reactions. Nucleoside 1 is a weak stabilizer of dA-dT base pairs, nucleoside 2 evokes strong stabilization. Strand displacement reactions used single-stranded invaders with single and multiple incorporations of stabilizers. Displacement is driven by negative enthalpy changes between target and displaced duplex. Toeholds are not required. Two new environmental sensitive fluorescent pyrene sensors were developed to monitor the progress of displacement reactions. Pyrene was connected to the nucleobase in the invader or to a dendritic linker in the output strand. Both new sensors were constructed by click chemistry; phosphoramidites and oligonucleotides were prepared. Sensors show monomer or excimer emission. Fluorescence intensity changes when the displacement reaction progresses. Our work demonstrates that strand displacement with base pair stabilizers is applicable to DNA, RNA and to related biopolymers with applications in chemical biology, nanotechnology and medicinal diagnostics. © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2022 11 15 Germany Chemistry 9513783 0947-6539 0 Oligonucleotides 0 7-deazapurine 0 Nucleosides 9007-49-2 DNA 0 Purines 0 Coloring Agents 0 Pyrenes IM Oligonucleotides Base Pairing Nucleosides DNA Purines Coloring Agents Pyrenes base pair stabilizer hybridization oligonucleotides pyrene fluorescence strand displacement The authors declare no conflict of interest. 2022 8 3 2022 10 1 6 0 2022 12 30 6 0 2022 9 30 9 32 2023 4 13 ppublish 36178316 PMC10100337 10.1002/chem.202202412 Simmel F. C., Yurke B., Singh H. R., Chem. Rev. 2019, 119, 6326–6369; 30714375 Connolly A. R., Seow N., Fenati R. A., Ellis A. V., Comprehensive nanoscience and nanotechnology (Eds.: Andrews D. L., Lipson R. H., Nann T.) Elsevier B. V. 2019, 2, 1–29; Wang F., Liu X., Willner I., Angew. Chem. Int. Ed. 2015, 54, 1098–1129, 25521588 Angew. Chem. 2015, 127, 1112–1144; Bi S., Yue S., Zhang S., Chem. Soc. Rev. 2017, 46, 4281–4298; 28573275 Zhou L., Kim S. C., Ho K. H., O'Flaherty D. K., Giurgiu C., Wright T. H., Szostak J. W., eLife 2019, 8, e51888; PMC6872209 31702557 Zhang D. Y., Seelig G., Nat. Chem. 2011, 3, 103–113; 21258382 Yurke B., Turberfield A. J., Mills A. P. Jr., Simmel F. C., Neumann J. L., Nature 2000, 406, 605–608; 10949296 Hänle E., Richert C., Angew. Chem. Int. Ed. 2018, 57, 8911–8915, 29779237 Angew. Chem. 2018, 130, 9049–9053; Shi X., Wang Z., Deng C., Song T., Pan L., Chen Z., PLoS One 2014, 9, e108856; PMC4193756 25303242 Tang W., Zhong W., Tan Y., Wang G. A., Li F., Liu Y., Top. Curr. Chem. 2020, 378, 10; 31894426 Zhao Y., Chen F., Li Q., Wang L., Fan C., Chem. Rev. 2015, 115, 12491–12545; 26551336 Pumm A.-K., Engelen W., Kopperger E., Isensee J., Vogt M., Kozina V., Kube M., Honemann M. N., Bertosin E., Langecker M., Golestanian R., Simmel F. C., Dietz H., Nature 2022, 607, 492–498. PMC9300469 35859200 Khodakov D. A., Khodakova A. S., Linacre A., Ellis A. V., J. Am. Chem. Soc. 2013, 135, 5612–5619; 23548100 Del Grosso E., Irmisch P., Gentile S., Prins L. J., Seidel R., Ricci F., Angew. Chem. Int. Ed. 2022, 61, e202201929, PMC9324813 35315568 Angew. Chem. 2022, 61, e202201929; PMC9324813 35315568 Liu H., Hong F., Smith F., Goertz J., Ouldridge T. E., Yan H., Šulc P., bioRxiv 10.1101/2021.04.01.438146; 10.1101/2021.04.01.438146 0 Zhang D. Y., Winfree E., J. Am. Chem. Soc. 2009, 131, 17303–17314; 19894722 Machinek R. R. F., Ouldridge T. E., Haley N. E. C., Bath J., Turberfield A. J., Nat. Commun. 2014, 5, 5324. 25382214 Kabza A. M., Kundu N., Zhong W., Sczepanski J. T., WIREs Nanomed. Nanobiotechnol. 2022, 14, e1743; PMC9756008 34328690 Kabza A. M., Young B. E., Sczepanski J. T., J. Am. Chem. Soc. 2017, 139, 17715–17718; 29182318 Olson X., Kotani S., Yurke B., Graugnard E., Hughes W. L., J. Phys. Chem. B 2017, 121, 2594–2602; PMC6317526 28256835 Zhang A., Kondhare D., Leonard P., Seela F., Chem. Eur. J. 2022, e202201294; PMC9543212 35652726 Hendrix C., Rosemeyer H., De Bouvere B., van Aerschot A., Seela F., Herdewijn P., Chem. Eur. J. 1997, 3, 1513–1520. Herdewijn P., Modified Nucleosides in Biochemistry, Biotechnology and Medicine Wiley-VCH, Weinheim, 2008; Seela F., He Y., He J., Becher G., Kröschel R., Zulauf M., Leonard P., Base-Modified Oligonucleotides With Increased Duplex Stability in Methods Mol. Biol., vol. 288: Oligonucleotide Synthesis: Methods and Applications (Ed. Herdewijn P.), Humana Press Inc., Totowa, NJ, 2004, 165–186; 15333903 Seela F., Peng X., Base-modified oligodeoxyribonucleotides: Pyrrolo[2,3-d]pyrimidines replacing purines in Current Protocols in Nucleic Acid Chemistry (Eds. Beaucage S. L., Bergstrom D. E., Glick G. D., Jones R. A.), John Wiley & Sons, USA, 2005, 4.25.1-4.25.25; 18428940 Vester B., Wengel J., Biochemistry 2004, 43, 13233–13241; 15491130 Revankar G. R., Rao T. S., Compr. Nat. Prod. Chem. 1999, 7, 313–339. Duffy K., Arangundy-Franklin S., Holliger P., BMC Biol. 2020, 18 : 112; PMC7469316 32878624 Roberts T. C., Langer R., Wood M. J. A., Nat. Rev. 2020, 19, 673–694. PMC7419031 32782413 Seela F., Peng X., Li H., Chittepu P., Shaikh K. I., He J., He Y., Mikhailopulo I., Collect. Czech. Chem. Commun. Symp. Series 2005, 7, 1–20. Czernecki D., Legrand P., Tekpinar M., Rosario S., Kaminski P.-A., Delarue M., Nat. Commun. 2021, 12, 2420; PMC8065100 33893297 Kirnos M. D., Khudyakov I. Y., Alexandrushkina N. I., Vanyushin B. F., Nature 1977, 270, 369–370. 413053 Chollet A., Kawashima E., Nucleic Acids Res. 1988, 16, 305–317; PMC334628 2829119 Chazin W. J., Rance M., Chollet A., Leupin W., Nucleic Acids Res. 1991, 19, 5507–5513; PMC328949 1945828 Nakano S.-i., Sugimoto N., Molecules 2014, 19, 11613–11627; PMC6271411 25100254 Gryaznov S., Schultz R. G., Tetrahedron Lett. 1994, 35, 2489–2492; Bailly C., Waring M. J., Nucleic Acids Res. 1998, 26, 4309–4314; PMC147870 9742229 Gaffney B. L., Marky L. A., Jones R. A., Tetrahedron 1984, 40, 3–13; Howard F. B., Miles H. T., Biochemistry 1984, 23, 6723–6732; 6529579 Chai Y., Kondhare D., Zhang A., Leonard P., Seela F., Chem. Eur. J. 2021, 27, 2093–2103. PMC7898646 33090562 Okamoto A., Tanaka K., Saito I., Bioorg. Med. Chem. Lett. 2002, 12, 97–99; 11738582 Peng X., Li H., Seela F., Nucleic Acids Res. 2006, 34, 5987–6000. PMC1694028 17071713 Seela F., Becher G., Nucleic Acids Res. 2001, 29, 2069–2078; PMC55453 11353076 Becher G., He J., Seela F., Helv. Chim. Acta 2001, 84, 1048–1065; He J., Becher G., Budow S., Seela F., Nucleosides Nucleotides Nucleic Acids 2003, 22, 573–576. 14565231 Kutyavin I. V., Rhinehart R. L., Lukhtanov E. A., Gorn V. V., R. B. Meyer, Jr. , H. B. Gamper, Jr. , Biochemistry 1996, 35, 11170–11176. 8780521 Luyten I., van Aerschot A., Rozenski J., Busson R., Herdewijn P., Nucleosides Nucleotides Nucleic Acids 1997, 16, 1649–1652; Canol A., Goodman M. F., Eritja R., Nucleosides Nucleotides Nucleic Acids 1994, 13, 501–509; Brown T., Booth E. D., Craig A. G., Nucleosides Nucleotides Nucleic Acids 1989, 8, 1051. Kondhare D., Leonard P., Seela F., J. Org. Chem. 2021, 86, 14461–14475. 34661407 Casas-Solvas J. M., Howgego J. D., Davis A. P., Org. Biomol. Chem. 2014, 12, 212–232. 24276543 Bitha P., Carvajal S. G., Citarella R. V., Child R. G., Delos Santos E. F., Dunne T. S., Durr F. E., Hlavka J. J., S. A. Lang, Jr. , Lindsay H. L., Morton G. O., Thomas J. P., Wallace R. E., Lin Y.-i, Haltiwanger R. C., Pierpont C. G., J. Med. Chem. 1989, 32, 2015–2020. 2754720 Seela F., Kaiser K., Nucleic Acids Res. 1987, 15, 3113–3129; PMC340719 3562246 Mei H., Ingale S. A., Seela F., Tetrahedron 2013, 69, 4731–4742. Yamana K., Ohtani Y., Nakano H., Saito I., Bioorg. Med. Chem. Lett. 2003, 13, 3429–3431; 14505642 Yamana K., Iwai T., Ohtani Y., Sato S., Nakamura M., Nakano H., Bioconjugate Chem. 2002, 13, 1266–1273; 12440862 Lewis F. D., Zhang Y., Letsinger R. L., J. Am. Chem. Soc. 1997, 119, 5451–5452. McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 Moreira B. G., You Y., Behlke M. A., Owczarzy R., Biochem. Biophys. Res. Commun. 2005, 327, 473–484; 15629139 Sau S. P., Kumar P., Sharma P. K., Hrdlicka P. J., Nucleic Acids Res. 2012, 40, e162. PMC3505983 22855561 Paris P. L., Langenhan J. M., Kool E. T., Nucleic Acids Res. 1998, 26, 3789–3793; PMC147755 9685497 Ingale S. A., Seela F., Tetrahedron 2014, 70, 380–391; Østergaard M. E., Hrdlicka P. J., Chem. Soc. Rev. 2011, 40, 5771–5788; PMC3644995 21487621 Wang C., Wu C., Chen Y., Song Y., Tan W., Yang C. J., Curr. Org. Chem. 2011, 15, 465–476; Sinkeldam R. W., Greco N. J., Tor Y., Chem. Rev. 2010, 110, 2579–2619. PMC2868948 20205430 36125031 2022 10 20 2022 12 06 1520-4812 33 10 2022 Oct 19 Bioconjugate chemistry Bioconjug Chem Purine-Purine Base Pairs in Parallel DNA: β-D Anomeric 8-Aza-7-deazaisoguanine and 7-Functionalized Conjugates Form Stable Base Pairs with α-D 5-Aza-7-deaza-2'-deoxyguanosine. 1796 1802 1796-1802 10.1021/acs.bioconjchem.2c00387 Anomeric purine-purine DNA represents a new recognition system with strands in parallel orientation. This work investigates the new heterochiral system and the positional impact of nucleobase functionalization. Tracts of anomeric isoguanine/8-aza-7-deazaisoguanine base pairs with 5-aza-7-deazaguanine were embedded in anomeric Watson-Crick DNA. It was discovered that stable purine-purine base pairs are formed in anomeric DNA. Nucleobase functionalization of the novel base pair system with short ethynyl and bulky octadiynyl chains showed that the position of functionalization is critical. From T m values and thermodynamic data, it is disclosed that side chains at 7-position of the β-D 8-aza-7-deaza-2'-deoxyisoguanosine-α-D 5-aza-7-deaza-2'-deoxyguanosine purine-purine pair are well accommodated in this new heterochiral DNA, whereas functionalization at 8-position of isoguanine hinders base pair formation. The new DNA base pair system has the potential to be applied in chemical biology, bioconjugation, and nanobiotechnology. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article 2022 09 20 United States Bioconjug Chem 9010319 1043-1802 0 7-deazaisoguanine 0 5-aza-7-deaza-2'-deoxyguanosine 9007-49-2 DNA 0 Purines IM Base Pairing DNA chemistry Purines chemistry Nucleic Acid Conformation 2022 9 21 6 0 2022 10 21 6 0 2022 9 20 7 3 ppublish 36125031 10.1021/acs.bioconjchem.2c00387 35948421 2022 08 22 2022 09 19 1520-6904 87 16 2022 Aug 19 The Journal of organic chemistry J Org Chem DNA with Purine-Purine Base Pairs: Size and Position of Isoguanine and 8-Aza-7-deazaisoguanine Clickable Residues Control the Molecular Recognition of Guanine and 5-Aza-7-deazaguanine. 10630 10650 10630-10650 10.1021/acs.joc.2c00812 Purine-purine base pairs represent an alternative recognition system to the purine-pyrimidine pairing reported by Watson and Crick. Modified purines are the source for non-canonical interactions. To mimic dG-dC interactions, 2'-deoxyisoguanosine (1a ) and 8-aza-7-deaza-2'-deoxyisoguanosine (2a ) are used to construct base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine (dZ). This work reports the chemical functionalization of 1a and its shape mimic 2a in purine-purine base pairs. Clickable rigid ethynyl and more flexible octadiynyl side chain derivatives of 1a and 2a were synthesized. They were protected and converted into phosphoramidites. Building blocks were employed in the synthesis of base-modified 12-mer oligonucleotides with clickable side chains. Pyrene azide was clicked to the linkers. After hybridization, oligonucleotides with purine-purine base pairs were constructed with linkers and pyrene adducts at position-8 of isoguanine and at position-7 of 8-aza-7-deazaisoguanine. Recognition and stability of purine-purine base pairs were explored using T m values, thermodynamic data, and CD-spectroscopic changes. Side chains at position-7 of 8-aza-7-deazaisoguanine-guanine base pairs or with 5-aza-7-deazaguanine are well accommodated in DNA, whereas functionalization at 8-position of isoguanine makes the DNA unstable. Pyrene click adducts verified the observation. In conclusion, position-7 is the place of choice for purine-purine base pair functionalization. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article 2022 08 10 United States J Org Chem 2985193R 0022-3263 0 7-deazaisoguanine 0 Oligonucleotides 0 Purines 0 Pyrenes 0 Pyrimidines 0 Pyrroles 5Z93L87A1R Guanine 9007-49-2 DNA E335PK4428 isoguanine GPL8T5ZO3M 7-deazaguanine W60KTZ3IZY purine IM Base Pairing DNA chemistry Guanine analogs & derivatives chemistry Nucleic Acid Conformation Oligonucleotides chemistry Purines Pyrenes Pyrimidines Pyrroles 2022 8 11 6 0 2022 8 23 6 0 2022 8 10 21 40 ppublish 35948421 10.1021/acs.joc.2c00812 35788502 2022 07 06 2024 08 31 2053-2296 78 Pt 7 2022 Jul 01 Acta crystallographica. Section C, Structural chemistry Acta Crystallogr C Struct Chem The 2'-deoxyribofuranoside of 3-phenyltetrahydropyrimido[4,5-c]pyridazin-7-one: a bicyclic nucleoside with sugar residues in N and S conformations, and its molecular recognition. 382 389 382-389 10.1107/S2053229622005964 The title compound 3-phenyltetrahydropyrimido[4,5-c]pyridazine 2'-deoxyribonucleoside [systematic name: 6-(2-deoxy-β-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-3-phenylpyrimido[4,5-c]pyridazin-7-one monohydrate, C17 H18 N4 O4 ·H2 O, 1] shows two conformations in the crystalline state and the two conformers (1a and 1b) adopt different sugar puckers. The sugar residue of 1a shows a C2'-endo S-type conformation, while 1b displays a C3'-endo N-type sugar pucker. Both conformers adopt similar anti conformations around the N-glycosylic bonds, with χ = -97.5 (3)° for conformer 1a and χ = -103.8 (3)° for conformer 1b. The extended crystalline network is stabilized by several intermolecular hydrogen bonds involving nucleoside and water molecules. The nucleobases and phenyl substituents of the two conformers (1a and 1b) are stacked and display a reverse alignment. A Hirshfeld surface analysis supports the hydrogen-bonding pattern, while curvedness surfaces visualize the stacking interactions of neighbouring molecules. The recognition face of nucleoside 1 for base-pair formation mimics that of 2'-deoxythymidine. Nucleoside 1 shows two pKa values: 1.8 for protonation and 11.2 for deprotonation. DNA oligonucleotides containing nucleoside 1 were synthesized and hybridized with complementary DNA strands. Nucleoside 1 forms a stable base pair with dA which is as stable as the canonical dA-dT pair. The bidentate 1-dA base pair is strengthened by a third hydrogen bond provided by the dA analogue 3-bromopyrazolo[3,4-d]pyrimidine-4,6-diamine 2'-deoxyribofuranoside (4). By this, duplex stability is increased and the suggested base-pairing patterns are supported. open access. Mei Hui H Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Budow-Busse Simone S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Eickmeier Henning H Anorganische Chemie II, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. Reuter Hans H 0000-0002-1251-0783 Anorganische Chemie II, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. Seela Frank F Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2022 06 13 England Acta Crystallogr C Struct Chem 101620313 2053-2296 0 Nucleosides 0 Sugars IM Crystallography, X-Ray Hydrogen Bonding Molecular Conformation Nucleosides chemistry Sugars 2′-deoxyribonucleoside base pair crystal structure hydrogen bonding pKa value pyrimido[4,5-c]pyridazine 2022 4 13 2022 6 2 2022 7 5 18 30 2022 7 6 6 0 2022 7 7 6 0 2022 6 13 ppublish 35788502 PMC9255914 10.1107/S2053229622005964 S2053229622005964 Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. 5079964 Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Chazin, W. J., Rance, M., Chollet, A. & Luepin, W. (1991). Nucleic Acids Res. 19, 5507–5513. PMC328949 1945828 Flack, H. D. (1983). Acta Cryst. A39, 876–881. He, J., Becher, G., Budow, S. & Seela, F. (2003). Nucleosides Nucleotides Nucleic Acids, 22, 573–576. 14565231 Hirao, I., Kimoto, M. & Yamashige, R. (2012). Acc. Chem. Res. 45, 2055–2065. 22263525 Hollenstein, M. (2012). Molecules, 17, 13569–13591. PMC6268876 23154273 Hudson, R. H. E. & Ghorbani-Choghamarani, A. (2007). Synlett, 2007, 0870–0873. IUPAC–IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9–15. 6832147 Krishnamurthy, R. (2012). Acc. Chem. Res. 45, 2035–2044. PMC3525050 22533519 Loakes, D., Brown, D. M., Salisbury, S. A., McDougall, M. G., Neagu, C., Nampalli, S. & Kumar, S. (2003a). Helv. Chim. Acta, 86, 1193–1204. Loakes, D., Brown, D. M., Salisbury, S. A., McDougall, M. G., Neagu, C., Nampalli, S. & Kumar, S. (2003b). Tetrahedron Lett. 44, 3387–3389. McDowell, J. A. & Turner, D. H. (1996). Biochemistry, 35, 14077–14089. 8916893 Mei, H., Ingale, S. A. & Seela, F. (2014). Chem. Eur. J. 20, 16248–16257. 25336305 Mei, H., Ingale, S. A. & Seela, F. (2015). Tetrahedron, 71, 6170–6175. Meiser, L. C., Antkowiak, P. L., Koch, J., Chen, W. D., Kohll, A. X., Stark, W. J., Heckel, R. & Grass, R. N. (2020). Nat. Protoc. 15, 86–101. 31784718 Mieczkowski, A., Tomczyk, E., Makowska, M. A., Nasulewicz-Goldeman, A., Gajda, R., Woźniak, K. & Wietrzyk, J. (2016). Synthesis, 48, 566–572. Saenger, W. (1984). In Principles of Nucleic Acid Structure, edited by C. R. Cantor. New York: Springer-Verlag. Seela, F. & Becher, G. (2001). Nucleic Acids Res. 29, 2069–2078. PMC55453 11353076 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. 18156677 Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Spek, A. L. (2020). Acta Cryst. E76, 1–11. PMC6944088 31921444 Topal, M. D. & Fresco, J. R. (1976). Nature (London), 263, 289–293. 958483 Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/. 0 35652726 2022 08 24 2024 09 05 1521-3765 28 47 2022 Aug 22 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry Anomeric DNA Strand Displacement with α-D Oligonucleotides as Invaders and Ethidium Bromide as Fluorescence Sensor for Duplexes with α/β-, β/β- and α/α-D Configuration. e202201294 e202201294 e202201294 10.1002/chem.202201294 DNA strand displacement is a technique to exchange one strand of a double stranded DNA by another strand (invader). It is an isothermal, enzyme free method driven by single stranded overhangs (toeholds) and is employed in DNA amplification, mismatch detection and nanotechnology. We discovered that anomeric (α/β) DNA can be used for heterochiral strand displacement. Homochiral DNA in β-D configuration was transformed to heterochiral DNA in α-D/β-D configuration and further to homochiral DNA with both strands in α-D configuration. Single stranded α-D DNA acts as invader. Herein, new anomeric displacement systems with and without toeholds were designed. Due to their resistance against enzymatic degradation, the systems are applicable to living cells. The light-up intercalator ethidium bromide is used as fluorescence sensor to follow the progress of displacement. Anomeric DNA displacement shows benefits over canonical DNA in view of toehold free displacement and simple detection by ethidium bromide. © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2022 07 04 Germany Chemistry 9513783 0947-6539 0 DNA, Single-Stranded 0 Oligonucleotides 9007-49-2 DNA EN464416SI Ethidium IM DNA genetics DNA, Single-Stranded Ethidium Nanotechnology Oligonucleotides anomeric DNA chirality displacement reactions hybridization oligonucleotides The authors declare no conflict of interest. 2022 4 26 2022 6 3 6 0 2022 8 25 6 0 2022 6 2 9 43 2022 10 7 ppublish 35652726 PMC9543212 10.1002/chem.202201294 Nucleic Acids in Chemistry and Biology, “3rd edition”, (Eds.: G. M. Blackburn, M. J. Gait, D. Loakes, D. M. Williams) The Royal Society of Chemistry, Cambridge, 2006; W. Saenger, Principles of Nucleic Acid Structure, Springer, New York, 1984. Watson J. D., Crick F. H. C., Nature 1953, 171, 964–967. 13063483 Davis J. T., Angew. Chem. Int. Ed. 2004, 43, 668–698; 14755695 Angew. Chem. 2004, 116, 684–716; Young B. E., Kundu N., Sczepanski J. T., Chem. Eur. J. 2019, 25, 7981–7990; PMC6615976 30913332 Wells R. D., Collier D. A., Hanvey J. C., Shimizu M., Wohlrab F., FASEB J. 1988, 2, 2939–2949; 3053307 Connolly A. R., Seow N., Fenati R. A., Ellis A. V., Comprehensive nanoscience and nanotechnology (Eds.: Andrews D. L., Lipson R. H., Nann T.) Elsevier B. V. 2019, 2, 1–29. Modified Nucleosides in Biochemistry, Biotechnology and Medicine (Ed.: P. Herdewijn), Wiley-VCH, Weinheim, 2008. Wang F., Liu X., Willner I., Angew. Chem. Int. Ed. 2015, 54, 1098–1129; 25521588 Angew. Chem. 2015, 127, 1112–1144; Condon A., Nat. Rev. Genet. 2006, 7, 565–575. PMC7097529 16770339 Simmel F. C., Yurke B., Singh H. R., Chem. Rev. 2019, 119, 6326–6369; 30714375 Tang W., Zhong W., Tan Y., Wang G. A., Li F., Liu Y., Top. Curr. Chem. 2020, 378 : 10; 31894426 Kabza A. M., Kundu N., Zhong W., Sczepanski J. T., WIREs Nanomed Nanobiotechnol. 2022, 14, e1743. PMC9756008 34328690 Rogers W. B., Manoharan V. N., Science 2015, 347, 639–642; 25657244 Amodio A., Zhao B., Porchetta A., Idili A., Castronovo M., Fan C., Ricci F., J. Am. Chem. Soc. 2014, 136, 16469–16472; 25369216 Larkey N. E., Almlie C. K., Tran V., Egan M., Burrows S. M., Anal. Chem. 2014, 86, 1853–1863; 24417738 Shi X., Wang Z., Deng C., Song T., Pan L., Chen Z., PLoS One 2014, 9, e108856; PMC4193756 25303242 Zhang D. Y., Seelig G., Nat. Chem. 2011, 3, 103–113; 21258382 Fern J., Schulman R., Nat. Commun. 2018, 9, 3766, 1–8; PMC6138645 30217991 Hendrix C., Rosemeyer H., De Bouvere B., van Aerschot A., Seela F., Herdewijn P., Chem. Eur. J. 1997, 3, 1513–1520. Zhou L., Kim S. C., Ho K. H., O'Flaherty D. K., Giurgiu C., Wright T. H., Szostak J. W., eLife 2019, 8, e51888; PMC6872209 31702557 Hänle E., Richert C., Angew. Chem. Int. Ed. 2018, 57, 8911–8915; 29779237 Angew. Chem. 2018, 130, 9049–9053. Yurke B., Turberfield A. J., A. P. Mills Jr. , Simmel F. C., Neumann J. L., Nature 2000, 406, 605–608; 10949296 Zhang D. Y., Winfree E., J. Am. Chem. Soc. 2009, 131, 17303–17314; 19894722 Khodakov D. A., Khodakova A. S., Linacre A., Ellis A. V., J. Am. Chem. Soc. 2013, 135, 5612–5619; 23548100 Machinek R. R. F., Ouldridge T. E., Haley N. E. C., Bath J., Turberfield A. J., Nat. Commun. 2014, 5, 5324; 25382214 Fern J., Scalise D., Cangialosi A., Howie D., Potters L., Schulman R., ACS Synth. Biol. 2017, 6, 190–193. 27744682 Garbesi A., Capobianco M. L., Colonna F. P., Tondelli L., Arcamone F., Manzini G., Hilbers C. W., Aelen J. M. E., Blommers M. J. J., Nucleic Acids Res. 1993, 21, 4159–4165; PMC310044 8414968 Damha M. J., Giannaris P. A., Marfey P., Biochemistry 1994, 33, 7877–7885. 8011650 Kabza A. M., Young B. E., Sczepanski J. T., J. Am. Chem. Soc. 2017, 139, 17715–17718; 29182318 Kundu N., Young B. E., Sczepanski J. T., Nucleic Acids Res. 2021, 49, 6114–6127; PMC8216467 34125895 Zhong W., Sczepanski J. T., ACS Synth. Biol. 2021, 10, 209–212. PMC7973774 33347747 Morvan F., Rayner B., Imbach J.-L., Chang D.-K., Lown J. W., Nucleic Acids Res. 1986, 14, 5019–5035; PMC311508 3725590 Morvan F., Rayner B., Imbach J.-L., Lee M., Hartley J. A., Chang D.-K., Lown J. W., Nucleic Acids Res. 1987, 15, 7027–7044; PMC306190 3658672 Chai Y., Guo X., Leonard P., Seela F., Chem. Eur. J. 2020, 26, 13973–13989; PMC7702046 32667103 Zhang A., Leonard P., Seela F., Chem. Eur. J. 2022, 28, e202103872. PMC9304229 34878201 Séquin U., Specialia 1973, 29, 1059–1062. 4744843 Lancelot G., Guesnet J.-L., Vovelle F., Biochemistry 1989, 28, 7871–7878; 2611218 Aramini J. M., van de Sande J. H., Germann M. W., Biochemistry 1997, 36, 9715–9725; 9245403 Kurfürst R., Roig V., Chassignol M., Asseline U., Thuong N. T., Tetrahedron 1993, 49, 6975–6990; Sun J.-s., François J.-C., Lavery R., Saison-Behmoaras T., Montenay-Garestier T., Thuong N. T., Hélène C., Biochemistry 1988, 27, 6039–6045; 2461219 Morvan F., Debart F., Vasseur J.-J., Chem. Biodiversity 2010, 7, 494–535. 20232324 Tanaka H., Vickart P., Bertrand J.-R., Rayner B., Morvan F., Imbach J.-L., Paulin D., Malvy C., Nucleic Acids Res. 1994, 22, 3069–3074; PMC310277 8065920 Paoletti J., Bazile D., Morvan F., Imbach J.-L., Paoletti C., Nucleic Acids Res. 1989, 17, 2693–2704. PMC317651 2717407 F. Seela, Y. He, Modified Nucleosides, Synthesis and Applications, in ‘Organic and Bioorganic Chemistry’, (Ed. D. Loakes), Transworld Research Network, 2002, 57–85; van de Sande J. H., Ramsing N. B., Germann M. W., Elhorst W., Kalisch B. W., von Kitzing E., Pon R. T., Clegg R. C., Jovin T. M., Science 1988, 241, 551–557; 3399890 Szabat M., Kierzek R., FEBS J. 2017, 284, 3986–3998; 28771935 Seela F., He Y., Wei C., Tetrahedron 1999, 55, 9481–9500. Chai Y., Kondhare D., Zhang A., Leonard P., Seela F., Chem. Eur. J. 2021, 27, 2093–2103; PMC7898646 33090562 Chai Y., Leonard P., Guo X., Seela F., Chem. Eur. J. 2019, 25, 16639–16651. PMC6972701 31583755 Tse W. C., Boger D. L., Acc. Chem. Res. 2004, 37, 61–69; 14730995 del Mundo I. M. A., Jeong Cho E., Dalby K. N., Vasquez K. M., Chem. Commun. 2020, 56, 1996–1999. PMC7323859 31960843 LePecq J.-B., Paoletti C., J. Mol. Biol. 1967, 27, 87–106; 6033613 Pohl F. M., Jovin T. M., Baehr W., Holbrook J. J., Proc. Nat. Acad. Sci. 1972, 69, 3805–3809; PMC389877 4509343 Bresloff J. L., Crothers D. M., Biochemistry 1981, 20, 3547–3553. 7260057 McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 Becker Y., Asher Y., Antimicrob. Agents Chemother. 1972, 1, 171–173. PMC444187 4680806 Aaij C., Borst P., Biochim. Biophys. Acta 1972, 269, 192–200; 5063906 Borst P., IUBMB Life 2005, 57, 745–747. 16511967 Waring M. J., J. Mol. Biol. 1965, 13, 269–282; 5859041 Boger D. L., Fink B. E., Brunette S. R., Tse W. C., Hedrick M. P., J. Am. Chem. Soc. 2001, 123, 5878–5891; 11414820 Li H., Peng X., Seela F., Bioorg. Med. Chem. Lett. 2004, 14, 6031–6034; 15546723 Luedtke N. W., Liu Q., Tor Y., Chem. Eur. J. 2005, 11, 495–508; 15549769 Chib R., Raut S., Sabnis S., Singhal P., Gryczynski Z., Gryczynski I., Methods Appl. Fluoresc. 2014, 2, 015003. 29148457 Galindo-Murillo R., T. E. Cheatham III , Nucleic Acids Res. 2021, 49, 3735–3747. PMC8053101 33764383 Moreira B. G., You Y., Behlke M. A., Owczarzy R., Biochem. Biophys. Res. Commun. 2005, 327, 473–484; 15629139 Rosemeyer H., Seela F., J. Chem. Soc. Perkin Trans. 2 2002, 746–750. Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M., Nucleic Acids Res. 2009, 37, 1713–1725. PMC2665218 19190094 Debart F., Rayner B., Degols G., Imbach J.-L., Nucleic Acids Res. 1992, 20, 1193–1200. PMC312158 1373234 35245210 2022 03 16 2024 08 24 2053-2296 78 Pt 3 2022 Mar 01 Acta crystallographica. Section C, Structural chemistry Acta Crystallogr C Struct Chem 8-Furylimidazolo-2'-deoxycytidine: crystal structure, packing, atropisomerism and fluorescence. 141 147 141-147 10.1107/S2053229622001000 8-Furylimidazolo-2'-deoxycytidine (fur ImidC), C14 H14 N4 O5 , is a fluorescent analogue of 2'-deoxycytidine, also displaying the same recognition face. As a constituent of DNA, fur ImidC forms extraordinarily strong silver-mediated self-pairs. Crystal structure determination revealed that fur ImidC adopts two types of disordered residues: the sugar unit and the furyl moiety. The disorder of the sugar residue amounts to an 87:13 split. The disorder of the furyl ring results from axial chirality at the C8-C2'' bond connecting the nucleobase to the heterocycle. The two atropisomers are present in unequal proportions [occupancies of 0.69 (2) and 0.31 (2)], and the nucleobase and the furyl moiety are coplanar. Considering the atomic sites with predominant occupancy, an anti conformation with χ = - 147.2 (7)° was found at the glycosylic bond and the 2'-deoxyribosyl moiety shows a C2'-endo (S, 2 T1 ) conformation, with P = 160.0°. A 1 H NMR-based conformational analysis of the furanose puckering revealed that the S conformation predominates also in solution. In the solid state, two neighbouring fur ImidC molecules are arranged in a head-to-tail fashion, but with a notable tilt of the molecules with respect to each other. Consequently, one N-H...N hydrogen bond is found for neighbouring molecules within one layer, while a second N-H...N hydrogen bond is formed to a molecule of an adjacent layer. In addition, hydrogen bonding is observed between the nucleobase and the sugar residue. A Hirshfeld surface analysis was performed to visualize the intermolecular interactions observed in the X-ray study. In addition, the fluorescence spectra of fur ImidC were measured in solvents of different polarity and viscosity. fur ImidC responds to microenvironmental changes (polarity and viscosity), which is explained by a hindered rotation of the furyl residue in solvents of high viscosity. open access. Budow-Busse Simone S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Jana Sunit K SK Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Daniliuc Constantin C 0000-0002-6709-3673 Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany. Seela Frank F Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2022 02 09 England Acta Crystallogr C Struct Chem 101620313 2053-2296 0W860991D6 Deoxycytidine 9007-49-2 DNA IM Crystallography, X-Ray DNA chemistry Deoxycytidine chemistry Hydrogen Bonding Molecular Conformation 8-furylimidazolo-2′-deoxycytidine Hirshfeld surface analysis atropisomerism crystal packing crystal structure fluorescence 2021 8 18 2022 1 28 2022 3 4 17 11 2022 3 5 6 0 2022 3 17 6 0 2022 2 9 ppublish 35245210 PMC8896525 10.1107/S2053229622001000 S2053229622001000 Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. 5079964 Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Budow-Busse, S., Chai, Y., Müller, S. L., Daniliuc, C. & Seela, F. (2021). Acta Cryst. C77, 202–208. PMC8097964 33949335 Clayden, J., Moran, W. J., Edwards, P. J. & LaPlante, S. R. (2009). Angew. Chem. Int. Ed. 48, 6398–6401. 19637174 Clever, G. H., Kaul, C. & Carell, T. (2007). Angew. Chem. Int. Ed. 46, 6226–6236. 17640011 Greco, N. J. & Tor, Y. (2007). Tetrahedron, 63, 3515–3527. PMC1868554 18431439 Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. PMC3246833 22477785 Hudson, R. H. E. & Ghorbani-Choghamarani, A. (2007). Synlett, 6, 870–873. Inoue, H., Imura, A. & Ohtsuka, E. (1987). Nippon Kagaku Kaishi, pp. 1214–1220. IUPAC–IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9–15. 6832147 Jana, S. K., Guo, X., Mei, H. & Seela, F. (2015). Chem. Commun. 51, 17301–17304. 26463426 Kovaliov, M., Segal, M. & Fischer, B. (2013). Tetrahedron, 69, 3698–3705. Kovaliov, M., Weitman, M., Major, D. T. & Fischer, B. (2014). J. Org. Chem. 79, 7051–7062. 24992467 Lee, S.-C., Heo, J., Woo, H. C., Lee, J.-A., Seo, Y. H., Lee, C.-L., Kim, S. & Kwon, O.-P. (2018). Chem. Eur. J. 24, 13706–13718. 29700889 Mei, H., Ingale, S. A. & Seela, F. (2014). Chem. Eur. J. 20, 16248–16257. 25336305 Ming, X. & Seela, F. (2012). Chem. Eur. J. 18, 9590–9600. 22767494 Noé, M. S., Ríos, A. C. & Tor, Y. (2012). Org. Lett. 14, 3150–3153. PMC3426657 22646728 Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. PMC3661305 23719469 Reichardt, C. (1994). Chem. Rev. 94, 2319–2358. Saenger, W. (1984). In Principles of Nucleic Acid Structure, edited by C. R. Cantor. New York: Springer-Verlag. Seela, F., Becher, G. & Chen, Y. (2000). Nucleosides Nucleotides Nucleic Acids, 19, 1581–1598. 11200261 Seela, F. & Chen, Y. (1995). Nucleosides Nucleotides Nucleic Acids, 14, 863–866. 0 Seela, F., Chen, Y., Bindig, U. & Kazimierczuk, Z. (1994). Helv. Chim. Acta, 77, 194–202. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. 0 Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. 0 Sinkeldam, R. W., Wheat, A. J., Boyaci, H. & Tor, Y. (2011). ChemPhysChem, 12, 567–570. PMC3102795 21344595 Smith, D. E., Marquez, I., Lokensgard, M. E., Rheingold, A. L., Hecht, D. A. & Gustafson, J. L. (2015). Angew. Chem. Int. Ed. 54, 11754–11759. 26276764 Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Tinsley, R. A. & Walter, N. G. (2006). RNA, 12, 522–529. PMC1383589 16431979 Toenjes, S. T. & Gustafson, J. L. (2018). Future Med. Chem. 10, 409–422. PMC5967358 29380622 Tokugawa, M., Masaki, Y., Canggadibrata, J. C., Kaneko, K., Shiozawa, T., Kanamori, T., Grøtli, M., Wilhelmsson, L. M., Sekine, M. & Seio, K. (2016). Chem. Commun. 52, 3809–3812. 26865112 Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net. 0 Van Wijk, L., Haasnoot, C. A. G., de Leeuw, F. A. A. M., Huckriede, B. D., Westra Hoekzema, A. J. A. & Altona, C. (1999). PSEUROT 6.3. Leiden Institute of Chemistry, Leiden University, The Netherlands. Wahba, A. S., Esmaeili, A., Damha, M. J. & Hudson, R. H. E. (2010). Nucleic Acids Res. 38, 1048–1056. PMC2817455 19933258 Wilhelmsson, L. M. (2010). Q. Rev. Biophys. 43, 159–183. 20478079 Young, D. W. & Wilson, H. R. (1975). Acta Cryst. B31, 961–965. 34878201 2022 02 18 2024 09 01 1521-3765 28 9 2022 Feb 16 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry Anomeric DNA: Functionalization of α-d Anomers of 7-Deaza-2'-deoxyadenosine and 2'-Deoxyuridine with Clickable Side Chains and Click Adducts in Homochiral and Heterochiral Double Helices. e202103872 e202103872 e202103872 10.1002/chem.202103872 Anomeric base pairs in heterochiral DNA with strands in the α-d and β-d configurations and homochiral DNA with both strands in α-d configuration were functionalized. The α-d anomers of 2'-deoxyuridine and 7-deaza-2'-deoxyadenosine were synthesized and functionalized with clickable octadiynyl side chains. Nucleosides were protected and converted to phosphoramidites. Solid-phase synthesis furnished 12-mer oligonucleotides, which were hybridized. Pyrene click adducts display fluorescence, a few of them with excimer emission. Tm values and thermodynamic data revealed the following order of duplex stability α/α-d≫β/β-d≥α/β-d. CD spectra disclosed that conformational changes occur during hybridization. Functionalized DNAs were modeled and energy minimized. Clickable side chains and bulky click adducts are well accommodated in the grooves of anomeric DNA. The investigation shows for the first time that anomeric DNAs can be functionalized in the same way as canonical DNA for potential applications in nucleic acid chemistry, chemical biology, and DNA material science. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2022 01 14 Germany Chemistry 9513783 0947-6539 60129-59-1 2'-deoxytubercidin 9007-49-2 DNA M351LCX45Y Tubercidin W78I7AY22C Deoxyuridine IM Base Pairing DNA chemistry Deoxyuridine Tubercidin analogs & derivatives anomeric DNA chirality click chemistry hybridization oligonucleotides The authors declare no conflict of interest. 2021 10 27 2021 12 9 6 0 2022 2 19 6 0 2021 12 8 9 25 2022 7 22 ppublish 34878201 PMC9304229 10.1002/chem.202103872 Morvan F., Rayner B., Imbach J.-L., Lee M., Hartley J. A., Chang D. K., Lown J. W., Nucleic Acids Res. 1987, 15, 7027–7044; PMC306190 3658672 Paoletti J., Bazile D., Morvan F., Imbach J.-L., Paoletti C., Nucleic Acids Res. 1989, 17, 2693–2704; PMC317651 2717407 Aramini J. M., Kalisch B. W., Pon R. T., van de Sande J. H., Germann M. W., Biochemistry 1996, 35, 9355–9365; 8755713 Keller B. M., Leumann C. J., Synthesis 2002, 6, 789–796. Chai Y., Kondhare D., Zhang A., Leonard P., Seela F., Chem. Eur. J. 2021, 27, 2093–2103. PMC7898646 33090562 Chai Y., Guo X., Leonard P., Seela F., Chem. Eur. J. 2020, 26, 13973–13989. PMC7702046 32667103 Aoyama H., Bull. Chem. Soc. Jpn. 1987, 60, 2073–2077. Hoffer M., Chem. Ber. 1960, 93, 2777–2781. H. Thomas, PhD thesis, University of Osnabrück (Germany), 1995. Seela F., Sirivolu V. R., Chittepu P., Bioconjugate Chem. 2008, 19, 211–224. 18020404 Seela F., Zulauf M., Reuter H., Kastner G., Acta Crystallogr. Sect. C 1999, 55, 1560–1562. 10815222 Seela F., Sirivolu V. R., Chem. Biodiversity 2006, 3, 509–514. 17193286 Meldal M., Tornøe C. W., Chem. Rev. 2008, 108, 2952–3015. 18698735 Kolb H. C., Finn M. G., Sharpless K. B., Angew. Chem. Int. Ed. 2001, 40, 2004–2021; 11433435 Angew. Chem. 2001, 113, 2056–2075. McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 Ide H., Shimizu H., Kimura Y., Sakamoto S., Makino K., Glackin M., Wallace S. S., Nakamuta H., Sasaki M., Sugimoto N., Biochemistry 1995, 34, 6947–6955. 7766604 Miyahara T., Nakatsuji H., Sugiyama H., J. Phys. Chem. A 2013, 117, 42–55. 23234566 Kypr J., Kejnovská I., Renčiuk D., Vorličková M., Nucleic Acids Res. 2009, 37, 1713–1725. PMC2665218 19190094 Tanaka H., Vickart P., Bertrand J.-R., Rayner B., Morvan F., Imbach J.-L., Paulin D., Malvy C., Nucleic Acids Res. 1994, 22, 3069–3074. PMC310277 8065920 Kowal E. A., Ganguly M., Pallan P. S., Marky L. A., Gold B., Egli M., Stone M. P., J. Phys. Chem. B 2011, 115, 13925–13934. PMC3225014 22059929 Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E., Nature 1980, 287, 755–758. 7432492 Østergaard M. E., Hrdlicka P. J., Chem. Soc. Rev. 2011, 40, 5771–5788. PMC3644995 21487621 Paris L. P., Langenhan J. M., Kool E. T., Nucleic Acids Res. 1998, 26, 3789–3793. PMC147755 9685497 Mei H., Ingale S. A., Tetrahedron 2013, 69, 4731–4742. Seela F., Wei C., Helv. Chim. Acta 1999, 82, 726–745. Nucleic Acids in Chemistry and Biology (Eds.: Blackburn G. M., Gait M. J., Loakes D., Williams D. M.), The Royal Society of Chemistry, Cambridge, 2006. Saenger W., Principles of Nucleic Acid Structure, Springer, New York, 1984. Modified Nucleosides in Biochemistry, Biotechnology and Medicine (Ed.: Herdewijn P.), Wiley-VCH, Weinheim, 2008. Fantoni N. Z., El-Sagheer A. H., Brown T., Chem. Rev. 2021, 121, 7122–7154. 33443411 34661407 2022 01 25 2022 01 25 1520-6904 86 21 2021 Nov 05 The Journal of organic chemistry J Org Chem Isoguanine (2-Hydroxyadenine) and 2-Aminoadenine Nucleosides with an 8-Aza-7-deazapurine Skeleton: Synthesis, Functionalization with Fluorescent and Clickable Side Chains, and Impact of 7-Substituents on Physical Properties. 14461 14475 14461-14475 10.1021/acs.joc.1c01283 7-Functionalized 8-aza-7-deaza-2'-deoxyisoguanine and 8-aza-7-deaza-2-aminoadenine 2'-deoxyribonucleosides decorated with fluorescent pyrene or benzofuran sensor tags or clickable side chains with terminal triple bonds were synthesized. 8-Aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine was used as the central intermediate and was accessible by an improved two-step glycosylation/amination protocol. Functionalization of position-7 was performed either on 8-aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine followed by selective deamination of the 2-amino group or on 7-iodinated 8-aza-7-deaza-2'-deoxyisoguanosine. Sonogashira and Suzuki-Miyaura cross-coupling reactions were employed for this purpose. Octadiynyl side chains were selected as linkers for click reactions with azido pyrenes. K Taut values calculated from H2 O/dioxane mixtures revealed that side chains have a significant influence on the tautomeric equilibrium. Photophysical properties (fluorescence, solvatochromism, and quantum yields) of the new 8-aza-7-deazapurine nucleosides with fluorescent side chains were determined. Remarkably, a strong excimer fluorescence in H2 O was observed for pyrene dye conjugates of 8-aza-7-deazaisoguanine and 2-aminoadenine nucleosides with a long linker. In other solvents including methanol, excimer fluorescence was negligible. The 2-aminoadenine and isoguanine nucleosides with the 8-aza-7-deazapurine skeleton expand the class of nucleosides applicable to fluorescence detection with respect to diagnostic and therapeutic purposes. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2021 10 18 United States J Org Chem 2985193R 0022-3263 0 7-deazapurine 0 Nucleosides 0 Oligonucleotides 0 Purines 452-06-2 2-Aminopurine 49P95BAU4Z 2,6-diaminopurine 5Z93L87A1R Guanine 9007-49-2 DNA E335PK4428 isoguanine IM 2-Aminopurine analogs & derivatives DNA Guanine Nucleosides Oligonucleotides Purines Skeleton 2021 10 19 6 0 2022 1 27 6 0 2021 10 18 12 17 ppublish 34661407 10.1021/acs.joc.1c01283 34014006 2021 07 23 2024 04 03 1521-3765 27 41 2021 Jul 21 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry Anomeric and Enantiomeric 2'-Deoxycytidines: Base Pair Stability in the Absence and Presence of Silver Ions. 10574 10577 10574-10577 10.1002/chem.202101253 Dodecamer duplex DNA containing anomeric (α/β-d) and enantiomeric (β-l/β-d) 2'-deoxycytidine mismatches was studied with respect to base pair stability in the absence and presence of silver ions. Stable duplexes with silver-mediated cytosine-cytosine pairs were formed by all anomeric and enantiomeric combinations. Stability changes were observed depending on the composition of the mismatches. Most strikingly, the new silver-mediated base pair of anomeric α-d-dC with enantiomeric β-l-dC is superior to the well-noted β-d/β-d-dC pair in terms of stability. CD spectra were used to follow global helical changes of DNA structure. © 2021 The Authors. Published by Wiley-VCH GmbH. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Budow-Busse Simone S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2021 06 10 Germany Chemistry 9513783 0947-6539 0 Ions 3M4G523W1G Silver 8J337D1HZY Cytosine 9007-49-2 DNA IM Base Pair Mismatch Base Pairing Cytosine DNA Ions Nucleic Acid Conformation Silver DNA duplexes anomers deoxycytidine enantiomers oligonucleotides silver The authors declare no conflict of interest. 2021 4 8 2021 5 21 6 0 2021 7 24 6 0 2021 5 20 9 0 2021 8 13 ppublish 34014006 PMC8362019 10.1002/chem.202101253 Young B. E., Kundu N., Sczepanski J. T., Chem. Eur. J. 2019, 25, 7981–7990. PMC6615976 30913332 Robins M. J., Khwaja T. A., Robins R. K., J. Org. Chem. 1970, 35, 636–639; 5416936 Urata H., Shinohara K., Ogura E., Ueda Y., Akagi M., J. Am. Chem. Soc. 1991, 113, 8174–8175; Urata H., Ogura E., Shinohara K., Ueda Y., Akagi M., Nucleic Acids Res. 1992, 20, 3325–3332. PMC312484 1630904 Holý A., Šorm F., Collect. Czech. Chem. Commun. 1969, 34, 3383–3401; Damha M. J., Giannaris P. A., Marfey P., Biochemistry 1994, 33, 7877–7885. 8011650 Simmons C. R., Zhang F., MacCulloch T., Fahmi N., Stephanopoulos N., Liu Y., Seeman N. C., Yan H., J. Am. Chem. Soc. 2017, 139, 11254–11260; 28731332 Kim K.-R., Lee T., Kim B.-S., Ahn D.-R., Chem. Sci. 2014, 5, 1533–1537; Zhong W., Sczepanski J. T., ACS Synth. Biol. 2021, 10, 209–212; PMC7973774 33347747 Hauser N. C., Martinez R., Jacob A., Rupp S., Hoheisel J. D., Matysiak S., Nucleic Acids Res. 2006, 34, 5101–5111. PMC1636439 16990248 Anderson D. J., Reischer R. J., Taylor A. J., Wechter W. J., Nucleosides Nucleotides 1984, 3, 499–512; Garbesi A., Capobianco M. L., Colonna F. P., Tondelli L., Arcamone F., Manzini G., Hilbers C. W., Aelen J. M. E., Blommers M. J. J., Nucleic Acids Res. 1993, 21, 4159–4165. PMC310044 8414968 Ogawa S., Wada S.-i., Urata H., RSC Adv. 2012, 2, 2274–2275; Damha M. J., Giannaris P. A., Marfey P., Reid L. S., Tetrahedron Lett. 1991, 32, 2573–2576; Kawakami J., Tsujita K., Sugimoto N., Anal. Sci. 2005, 21, 77–82; 15732462 Urata H., Ueda Y., Suhara H., Nishioka E., Akagi M., J. Am. Chem. Soc. 1993, 115, 9852–9853. Funai T., Adachi N., Aotani M., Wada S.-i., Urata H., Nucleosides Nucleotides Nucleic Acids 2020, 39, 310–321. 31514571 Ni G., Du Y., Tang F., Liu J., Zhao H., Chen Q., RSC Adv. 2019, 9, 14302–14320. PMC9064229 35519323 Chai Y., Kondhare D., Zhang A., Leonard P., Seela F., Chem. Eur. J. 2021, 27, 2093–2103; PMC7898646 33090562 Morvan F., Zeidler J., Rayner B., Tetrahedron 1998, 54, 71–82; Nielsen P., Christensen N. K., Dalskov J. K., Chem. Eur. J. 2002, 8, 712–722; 11855719 Naval M., Michel T., Vasseur J.-J., Debart F., Bioorg. Med. Chem. Lett. 2002, 12, 1435–1438. 12031314 Guo X., Seela F., Chem. Eur. J. 2017, 23, 11776–11779; 28682466 Chai Y., Guo X., Leonard P., Seela F., Chem. Eur. J. 2020, 26, 13973–13989; PMC7702046 32667103 Chai Y., Leonard P., Guo X., Seela F., Chem. Eur. J. 2019, 25, 16639–16651; PMC6972701 31583755 Müller S. L., Zhou X., Leonard P., Korzhenko O., Daniliuc C., Seela F., Chem. Eur. J. 2019, 25, 3077–3090. 30520165 Tanaka Y., Kondo J., Sychrovský V., Ŝebera J., Dairaku T., Saneyoshi H., Urata H., Torigoe H., Ono A., Chem. Commun. 2015, 51, 17343–17360; 26466090 Ono A., Torigoe H., Tanaka Y., Okamoto I., Chem. Soc. Rev. 2011, 40, 5855–5866; 21826352 Mistry L., El-Zubir O., Dura G., Clegg W., Waddell P. G., Pope T., Hofer W. A., Wright N. G., Horrocks B. R., Houlton A., Chem. Sci. 2019, 10, 3186–3195; PMC6429620 30996900 Marzilli L. G., Kistenmacher T. J., Rossi M., J. Am. Chem. Soc. 1977, 99, 2797–2798; 850036 Chen X., Karpenko A., Lopez-Acevedo O., ACS Omega 2017, 2, 7343–7348; PMC6045379 30023548 Nakagawa O., Aoyama H., Fujii A., Kishimoto Y., Obika S., Chem. Eur. J. 2021, 27, 3842–3848; 33274789 Hossain M. N., Ahmad S., Kraatz H.-B., ChemPlusChem 2021, 86, 224–231. 33048464 McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 33949335 2021 06 22 2024 08 10 2053-2296 77 Pt 5 2021 May 01 Acta crystallographica. Section C, Structural chemistry Acta Crystallogr C Struct Chem The α-D-anomer of 2'-deoxycytidine: crystal structure, nucleoside conformation and Hirshfeld surface analysis. 202 208 202-208 10.1107/S2053229621003430 β-2'-Deoxyribonucleosides are the constituents of nucleic acids, whereas their anomeric α-analogues are rarely found in nature. Moreover, not much information is available on the structural and conformational parameters of α-2'-deoxyribonucleosides. This study reports on the single-crystal X-ray structure of α-2'-deoxycytidine, C9 H13 N3 O4 (1), and the conformational parameters characterizing 1 were determined. The conformation at the glycosylic bond is anti, with χ = 173.4 (2)°, and the sugar residue adopts an almost symmetrical C2'-endo-C3'-exo twist (2 3 T; S-type), with P = 179.7°. Both values lie outside the conformational range usually preferred by α-nucleosides. In addition, the amino group at the nucleobase shows partial double-bond character. This is supported by two separated signals for the amino protons in the 1 H NMR spectrum, indicating a hindered rotation around the C4-N4 bond and a relatively short C-N bond in the solid state. Crystal packing is controlled by N-H...O and O-H...O contacts between the nucleobase and sugar moieties. Moreover, two weak C-H...N contacts (C1'-H1' and C3'-H3'A) are observed. A Hirshfeld surface analysis was carried out and the results support the intermolecular interactions observed by the X-ray analysis. open access. Budow-Busse Simone S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Chai Yingying Y Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Müller Sebastian Lars SL Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Daniliuc Constantin C 0000-0002-6709-3673 Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany. Seela Frank F Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2021 04 09 England Acta Crystallogr C Struct Chem 101620313 2053-2296 0 Deoxyribonucleosides 0 Nucleic Acids 0W860991D6 Deoxycytidine IM Crystallography, X-Ray Deoxycytidine chemistry Deoxyribonucleosides chemistry Hydrogen Bonding Molecular Conformation Nucleic Acids analysis chemistry Hirshfeld surface analysis anomer crystal packing crystal structure nucleic acid chemistry α-2′-deoxycytidine 2021 2 24 2021 3 30 2021 5 5 9 0 2021 5 6 6 0 2021 6 23 6 0 2021 4 9 ppublish 33949335 PMC8097964 10.1107/S2053229621003430 S2053229621003430 Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. 5079964 Bonnett, R. (1963). Chem. Rev. 63, 573–605. Bruker (1998). XP – Interactive molecular graphics. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Chai, Y., Guo, X., Leonard, P. & Seela, F. (2020). Chem. Eur. J. 26, 13973–13989. PMC7702046 32667103 Chai, Y., Leonard, P., Guo, X. & Seela, F. (2019). Chem. Eur. J. 25, 16639–16651. PMC6972701 31583755 Fonseca Guerra, C., Sanz Miguel, P. J., Cebollada, A., Bickelhaupt, F. M. & Lippert, B. (2014). Chem. Eur. J. 20, 9494–9499. 25043576 Görbitz, C. H., Nelson, W. H. & Sagstuen, E. (2005). Acta Cryst. E61, o1207–o1209. Guo, X. & Seela, F. (2017). Chem. Eur. J. 23, 11776–11779. 28682466 Hamor, T. A., O’Leary, M. K. & Walker, R. T. (1977). Acta Cryst. B33, 1218–1223. IUPAC–IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9–15. 6832147 Kondhare, D., Budow-Busse, S., Daniliuc, C. & Seela, F. (2020). Acta Cryst. C76, 513–523. PMC7199197 32367834 Latha, Y. S. & Yathindra, N. (1992). Biopolymers, 32, 249–269. 1581546 Morvan, F., Rayner, B. & Imbach, J.-L. (1990). In Genetic Engineering, Vol. 12, edited by J. K. Setlow. New York: Plenum Press. Morvan, F., Rayner, B., Imbach, J.-L., Chang, D.-K. & Lown, J. W. (1987a). Nucleic Acids Res. 15, 4241–4255. PMC340845 3588292 Morvan, F., Rayner, B., Imbach, J.-L., Lee, M., Hartley, J. A., Chang, D.-K. & Lown, J. W. (1987b). Nucleic Acids Res. 15, 7027–7044. PMC306190 3658672 Müller, S. L., Zhou, X., Leonard, P., Korzhenko, O., Daniliuc, C. & Seela, F. (2019). Chem. Eur. J. 25, 3077–3090. 30520165 Ni, G., Du, Y., Tang, F., Liu, J., Zhao, H. & Chen, Q. (2019). RSC Adv. 9, 14302–14320. PMC9064229 35519323 Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. PMC3661305 23719469 Post, M. L., Birnbaum, G. I., Huber, C. P. & Shugar, D. (1977). Biochim. Biophys. Acta Nucleic Acids Protein Synth. 479, 133–142. 921994 Poznański, J., Felczak, K., Bretner, M., Kulikowski, T. & Remin, M. (2001). Biochem. Biophys. Res. Commun. 283, 1142–1149. 11355892 Rossi, M. & Kistenmacher, T. J. (1977). Acta Cryst. B33, 3962–3965. Saenger, W. (1984). In Principles of Nucleic Acid Structure, edited by C. R. Cantor. New York: Springer-Verlag. Seela, F., Rosemeyer, H., Melenewski, A., Heithoff, E.-M., Eickmeier, H. & Reuter, H. (2002). Acta Cryst. C58, o142–o144. 11870307 Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. 0 Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. 0 Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Sundaralingam, M. (1971). J. Am. Chem. Soc. 93, 6644–6647. 5122780 Suzuki, S., Suzuki, K., Imai, T., Suzuki, N. & Okuda, S. (1965). J. Biol. Chem. 240, PC554–PC556. 14253476 Thibaudeau, C. & Chattopadhyaya, J. (1997). Nucleoside Nucleotides Nucleic Acids, 16, 523–529. 11562991 Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net. Van Wijk, L., Haasnoot, C. A. G., de Leeuw, F. A. A. M., Huckriede, B. D., Westra Hoekzema, A. J. A. & Altona, C. (1999). PSEUROT 6.3. Leiden Institute of Chemistry, Leiden University, The Netherlands. Yamaguchi, T. & Saneyoshi, M. (1984). Chem. Pharm. Bull. 32, 1441–1450. 6467456 Young, D. W. & Wilson, H. R. (1975). Acta Cryst. B31, 961–965. Zhou, X., Müller, S. L., Leonard, P., Daniliuc, C., Chai, Y., Budow-Busse, S. & Seela, F. (2019). J. Mol. Struct. 1190, 37–46. 33443814 2021 05 10 2021 07 08 1521-3765 27 26 2021 May 06 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry 5-Aza-7-deazaguanine-Isoguanine and Guanine-Isoguanine Base Pairs in Watson-Crick DNA: The Impact of Purine Tracts, Clickable Dendritic Side Chains, and Pyrene Adducts. 7453 7466 7453-7466 10.1002/chem.202005199 The Watson-Crick coding system depends on the molecular recognition of complementary purine and pyrimidine bases. Now, the construction of hybrid DNAs with Watson-Crick and purine-purine base pairs decorated with dendritic side chains was performed. Oligonucleotides with single and multiple incorporations of 5-aza-7-deaza-2'-deoxyguanosine, its tripropargylamine derivative, and 2'-deoxyisoguanosine were synthesized. Duplex stability decreased if single modified purine-purine base pairs were inserted, but increased if pyrene residues were introduced by click chemistry. A growing number of consecutive 5-aza-7-deazaguanine-isoguanine base pairs led to strong stepwise duplex stabilization, a phenomenon not observed for the guanine-isoguanine base pair. Spacious residues are well accommodated in the large groove of purine-purine DNA tracts. Changes to the global helical structure monitored by circular dichroism spectroscopy show the impact of functionalization to the global double-helix structure. This study explores new areas of molecular recognition realized by purine base pairs that are complementary in hydrogen bonding, but not in size, relative to canonical pairs. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, University of Münster, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2021 03 18 Germany Chemistry 9513783 0947-6539 0 DNA Adducts 0 Purines 0 Pyrenes 5Z93L87A1R Guanine 9007-49-2 DNA E335PK4428 isoguanine GPL8T5ZO3M 7-deazaguanine IM Base Pairing DNA DNA Adducts Guanine analogs & derivatives Nucleic Acid Conformation Purines Pyrenes DNA molecular recognition nucleosides oligonucleotides purine-purine base pairing The authors declare no conflict of interest. 2020 12 4 2021 1 15 6 0 2021 5 11 6 0 2021 1 14 12 13 2021 7 2 ppublish 33443814 PMC8251886 10.1002/chem.202005199 Watson J. D., Crick F. H. C., Nature 1953, 171, 737–738; 13054692 Seela F., Peng X., Li H., Chittepu P., Shaikh K. I., He J., He Y., Mikhailopulo I., Collect. Symp. Ser. 2005, 7, 1–20. Seela F., Wei C., Helv. Chim. Acta 1999, 82, 726–745. Hunziker J., Roth H.-J., Böhringer M., Giger A., Diederichsen U., Göbel M., Krishnan R., Jaun B., Leumann C., Eschenmoser A., Helv. Chim. Acta 1993, 76, 259–352. Battersby T. R., Albalos M., Friesenhahn M. J., Chem. Biol. 2007, 14, 525–531; 17524983 Heuberger B. D., Switzer C., ChemBioChem 2008, 9, 2779–2783. 18985646 Liu H., Gao J., Lynch S. R., Saito Y. D., Maynard L., Kool E. T., Science 2003, 302, 868–871; 14593180 Liu H., Gao J., Kool E. T., J. Am. Chem. Soc. 2005, 127, 1396–1402; 15686371 Leonard N. J., Acc. Chem. Res. 1982, 15, 128–135. Hoshika S., Singh I., Switzer C., R. W. Molt Jr. , Leal N. A., Kim M.-J., Kim M.-S., Kim H.-J., Georgiadis M. M., Benner S. A., J. Am. Chem. Soc. 2018, 140, 11655–11660; 30148365 Skelly J. V., Edwards K. J., Jenkins T. C., Neidle S., Proc. Natl. Acad. Sci. USA 1993, 90, 804–808; PMC45758 8430089 F. V. Murphy IV , Ramakrishnan V., Nat. Struct. Mol. Biol. 2004, 11, 1251–1252; 15558050 Corfield P. W. R., Hunter W. N., Brown T., Robinson P., Kennard O., Nucleic Acids Res. 1987, 15, 7935–7949. PMC306318 3671069 Seela F., Amberg S., Melenewski A., Rosemeyer H., Helv. Chim. Acta 2001, 84, 1996–2014. Rosemeyer H., Seela F., J. Org. Chem. 1987, 52, 5136–5143. Seela F., Melenewski A., Eur. J. Org. Chem. 1999, 485–496; Seela F., Melenewski A., Wei C., Bioorg. Med. Chem. Lett. 1997, 7, 2173–2176; Seela F., Rosemeyer H. in Recent Advances in Nucleosides: Chemistry and Chemotherapy (Ed.: Chu C. K.), Elsevier Science B. V., Amsterdam, 2002, pp. 505–533; Hoshika S., Leal N. A., Kim M.-J., Kim M.-S., Karalkar N. B., Kim H.-J., Bates A. M., N. E. Watkins Jr. , SantaLucia H. A., Meyer A. J., DasGupta S., Piccirilli J. A., Ellington A. D., J. SantaLucia Jr. , Georgiadis M. M., Benner S. A., Science 2019, 363, 884–887; PMC6413494 30792304 Zhang L., Yang Z., Sefah K., Bradley K. M., Hoshika S., Kim M.-J., Kim H.-J., Zhu G., Jiménez E., Cansiz S., Teng I.-T., Champanhac C., McLendon C., Liu C., Zhang W., Gerloff D. L., Huang Z., Tan W., Benner S. A., J. Am. Chem. Soc. 2015, 137, 6734–6737. PMC4500535 25966323 Seela F., Shaikh K. I., Helv. Chim. Acta 2006, 89, 2794–2814. Lin W., Zhang X., Seela F., Helv. Chim. Acta 2004, 87, 2235–2244; Leonard P., Kondhare D., Jentgens X., Daniliuc C., Seela F., J. Org. Chem. 2019, 84, 13313–13328; 31584277 Kondhare D., Zhang A., Leonard P., Seela F., J. Org. Chem. 2020, 85, 10525–10538. 32700909 Karskela M., Helkearo M., Virta P., Lönnberg H., Bioconjugate Chem. 2010, 21, 748–755; 20225822 Xiong H., Leonard P., Seela F., Bioconjugate Chem. 2012, 23, 856–870; 22443223 Qiu J., Wilson A., El-Sagheer A. H., Brown T., Nucleic Acids Res. 2016, 44, e138; PMC5041472 27369379 Sirivolu V. R., Chittepu P., Seela F., ChemBioChem 2008, 9, 2305–2316; 18780386 Seela F., Xiong H., Budow S., Tetrahedron 2010, 66, 3930–3943. Horn T., Chang C.-A., Urdea M. S., Nucleic Acids Res. 1997, 25, 4842–4849. PMC147109 9365266 Grayson S. M., Fréchet J. M. J., Chem. Rev. 2001, 101, 3819–3867; 11740922 Ornelas C., Aranzaes J. R., Cloutet E., Alves S., Astruc D., Angew. Chem. Int. Ed. 2007, 46, 872–877; 17031893 Angew. Chem. 2007, 119, 890–895; Johnson J. A., Finn M. G., Koberstein J. T., Turro N. J., Macromol. Rapid Commun. 2008, 29, 1052–1072; Caminade A.-M., Turrin C.-O., Majoral J.-P., Chem. Eur. J. 2008, 14, 7422–7432; 18537210 Hudson R. H. E., Damha M. J., J. Am. Chem. Soc. 1993, 115, 2119–2124; Endo M., Majima T., Chem. Commun. 2006, 2329–2331; 16733569 DeMattei C. R., Huang B., Tomalia D. A., Nano Lett. 2004, 4, 771–777; Shchepinov M. S., Udalova I. A., Bridgman A. J., Southern E. M., Nucleic Acids Res. 1997, 25, 4447–4454. PMC147080 9358151 Horn T., Urdea M. S., Nucleic Acids Res. 1989, 17, 6959–6967. PMC318426 2780317 Winnik F. M., Chem. Rev. 1993, 93, 587–614; Østergaard M. E., Hrdlicka P. J., Chem. Soc. Rev. 2011, 40, 5771–5788; PMC3644995 21487621 Mayer-Enthart E., Wagenknecht H.-A., Angew. Chem. Int. Ed. 2006, 45, 3372–3375; 16619327 Angew. Chem. 2006, 118, 3451–3453; Okamoto A., Tainaka K., Nishiza K.-i., Saito I., J. Am. Chem. Soc. 2005, 127, 13128–13129; 16173724 Astakhova I. V., Korshun V. A., Wengel J., Chem. Eur. J. 2008, 14, 11010–11026; 18979465 Seela F., Ingale S. A., J. Org. Chem. 2010, 75, 284–295; 20000692 Ingale S. A., Pujari S. S., Sirivolu V. R., Ding P., Xiong H., Mei H., Seela F., J. Org. Chem. 2012, 77, 188–199; 22129276 Paris P. L., Langenhan J. M., Kool E. T., Nucleic Acids Res. 1998, 26, 3789–3793; PMC147755 9685497 Mei H., Ingale S. A., Seela F., Tetrahedron 2013, 69, 4731–4742; Christensen U. B., Pedersen E. B., Helv. Chim. Acta 2003, 86, 2090–2097; Telser J., Cruickshank K. A., Morrison L. E., Netzel T. L., Chan C.-k., J. Am. Chem. Soc. 1989, 111, 7226–7232. Roberts C., Bandaru R., Switzer C., Tetrahedron Lett. 1995, 36, 3601–3604; Seela F., Chen Y., Melenewski A., Rosemeyer H., Wei C., Acta Biochim. Pol. 1996, 43, 45–52. 8790711 McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M., Nucleic Acids Res. 2009, 37, 1713–1725; PMC2665218 19190094 Miyahara T., Nakatsuji H., Sugiyama H., J. Phys. Chem. A 2013, 117, 42–55. 23234566 Kazimierczuk Z., Mertens R., Kawczynski W., Seela F., Helv. Chim. Acta 1991, 74, 1742–1748. Kumar T. S., Madsen A. S., Østergaard M. E., Wengel J., Hrdlicka P. J., J. Org. Chem. 2008, 73, 7060–7066; 18710289 Langenegger S. M., Häner R., ChemBioChem 2005, 6, 848–851; 15776408 Lou C., Dallmann A., Marafini P., Gao R., Brown T., Chem. Sci. 2014, 5, 3836–3844; Christensen U. B., Pedersen E. B., Nucleic Acids Res. 2002, 30, 4918–4925. PMC137172 12433995 Meldal M., Tornøe C. W., Chem. Rev. 2008, 108, 2952–3015; 18698735 Huisgen R., Pure Appl. Chem. 1989, 61, 613–628; Kolb H. C., Finn M. G., Sharpless K. B., Angew. Chem. Int. Ed. 2001, 40, 2004–2021; 11433435 Angew. Chem. 2001, 113, 2056–2075. Nakamura M., Fukunaga Y., Sasa K., Ohtoshi Y., Kanaori K., Hayashi H., Nakano H., Yamana K., Nucleic Acids Res. 2005, 33, 5887–5895; PMC1258169 16237124 Bassani D. M., Wirz J., Hochstrasser R., Leupin W., J. Photochem. Photobiol. A 1996, 100, 65–76; Bahr M., Gabelica V., Granzhan A., Teulade-Fichou M.-P., Weinhold E., Nucleic Acids Res. 2008, 36, 5000–5012. PMC2528167 18658249 Jones M. R., Seeman N. C., Mirkin C. A., Science 2015, 347, 1260901; 25700524 Stulz E., Clever G., Shionoya M., Mao C., Chem. Soc. Rev. 2011, 40, 5633–5635; 22037663 Aldaye F., Palmer A. L., Sleiman H. F., Science 2008, 321, 1795–1799. 18818351 Meiser L. C., Antkowiak P. L., Koch J., Chen W. D., Kohli A. X., Stark W. J., Heckel R., Grass R. N., Nat. Protoc. 2020, 15, 86–101; 31784718 nucleosides Modified, Biochemistry Biotechnology and Medicine (Ed.: Herdewijn P.), Wiley-VCH, Weinheim, 2008. Zhou X., Kondhare D., Leonard P., Seela F., Chem. Eur. J. 2019, 25, 10408–10419. 31062885 Seela F., Wei C., Helv. Chim. Acta 1997, 80, 73–85. Hoffer M., Chem. Ber. 1960, 93, 2777–2781. 33090562 2021 02 22 2023 11 10 1521-3765 27 6 2021 Jan 26 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry The 2-Amino Group of 8-Aza-7-deaza-7-bromopurine-2,6-diamine and Purine-2,6-diamine as Stabilizer for the Adenine-Thymine Base Pair in Heterochiral DNA with Strands in Anomeric Configuration. 2093 2103 2093-2103 10.1002/chem.202004221 Stabilization of DNA is beneficial for many applications in the fields of DNA therapeutics, diagnostics, and materials science. Now, this phenomenon is studied on heterochiral DNA, an autonomous DNA recognition system with complementary strands in α-D and β-D configuration showing parallel strand orientation. The 12-mer heterochiral duplexes were constructed from anomeric (α/β-D) oligonucleotide single-strands. Purine-2,6-diamine and 8-aza-7-deaza-7-bromopurine-2,6-diamine 2'-deoxyribonucleosides having the capability to form tridentate base pairs with dT were used to strengthen the stability of the dA-dT base pair. Tm data and thermodynamic values obtained from UV melting profiles indicated that the 8-aza-7-deaza 2'-deoxyribonucleoside decorated with a bromo substituent is so far the most efficient stabilizer for heterochiral DNA. Compared with that, the stabilizing effect of the purine-2,6-diamine 2'-deoxyribonucleoside is low. Global changes of helix structures were identified by circular dichroism (CD) spectra during melting. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. Chai Yingying Y Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Department of Respiratory, Critical Care Medicine Targeted Tracer, Research and Development Laboratory, West China Hospital, Sichuan, 610041, P. R. China. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2020 12 21 Germany Chemistry 9513783 0947-6539 0 Diamines 0 Purines 9007-49-2 DNA JAC85A2161 Adenine QR26YLT7LT Thymine IM Adenine Base Pairing Circular Dichroism DNA chemistry Diamines Nucleic Acid Conformation Purines Thymine configuration heterochiral parallel DNA purine-2,6-diamine pyrazolo[3,4-d]pyrimidine The authors declare no conflict of interest. 2020 9 16 2020 10 23 6 0 2021 2 23 6 0 2020 10 22 12 20 2021 2 22 ppublish 33090562 PMC7898646 10.1002/chem.202004221 Modified nucleosides, Biochemistry, Biotechnology and Medicine, (Ed.: Herdewijn P.), Wiley-VCH, Weinheim, 2008; Saenger W., Modified nucleosides and nucleotides, nucleoside di- and triphosphates, coenzymes and antibiotics, in Principles of Nucleic Acid Structure, Springer Advanced Texts in Chemistry. Springer, New York, NY, 1984; Limbach P. A., Crain P. F., McCloskey J. A., Nucleic Acids Res. 1994, 22, 2183–2196; PMC523672 7518580 Modified Nucleosides and Cancer, in Recent Results in Cancer Research, (Ed.: Nass G.) Springer, New York, 1983. Iwamoto R. H., Acton E. M., Goodman L., J. Med. Chem. 1963, 6, 684–688; 14184926 Seela F., Gabler B., Helv. Chim. Acta 1994, 77, 622–630; Kirnos N. D., Khudyakov I. Y., Alexandrushkina N. I., Vanyushkin B. F., Nature 1977, 270, 369–370. 413053 Herdewijn P., Antisense Nucleic Acid Drug Dev. 2000, 10, 297–310; 10984123 Revankar G. R., Rao T. S., Compr. Nat. Prod. Chem. 1999, 7, 313–339; Chollet A., Kawashima E., Nucleic Acids Res. 1988, 16, 305–317. PMC334628 2829119 Chazin W. J., Rance M., Chollet A., Leupin W., Nucleic Acids Res. 1991, 19, 5507–5513; PMC328949 1945828 Nakano S.-i., Sugimoto N., Molecules 2014, 19, 11613–11627; PMC6271411 25100254 Gryaznov S., Schultz R. G., Tetrahedron Lett. 1994, 35, 2489–2492; Luyten I., Van Aerschot A., Rozenski J., Busson R., Herdewijn P., Nucleosides Nucleotides Nucleic Acids 1997, 16, 1649–1652; Bailly C., Waring M. J., Nucleic Acids Res. 1998, 26, 4309–4314; PMC147870 9742229 Gaffney B. L., Marky L. A., Jones R. A., Tetrahedron 1984, 40, 3–13; Howard F. B., Miles H. T., Biochemistry 1984, 23, 6723–6732. 6529579 Cheong C., I. Tinoco, Jr. , Chollet A., Nucleic Acids Res. 1988, 16, 5115–5122. PMC336721 3387218 Seela F., Becher G., Nucleic Acids Res. 2001, 29, 2069–2078; PMC55453 11353076 Becher G., He J., Seela F., Helv. Chim. Acta 2001, 84, 1048–1065; He J., Seela F., Tetrahedron 2002, 58, 4535–4542; He J., Becher G., Budow S., Seela F., Nucleosides Nucleotides Nucleic Acids 2003, 22, 573–576; 14565231 Seela F., He Y., He J., Becher G., Kröschel R., Zulauf M., Leonard P., Methods in Molecular Biology in Oligonucleotide Synthesis: Methods and Applications (Ed.: Herdewijn P.), Humana Press Inc., Totowa, NJ, 2004, vol. 288, pp. 165–186. 15333903 Seela F., Budow S., Mol. BioSyst. 2008, 4, 232–245. 18437266 Chai Y., Guo X., Leonard P., Seela F., Chem. Eur. J. 2020, 26, 13973–13989. PMC7702046 32667103 Paoletti J., Bazile D., Morvan F., Imbach J.-L., Paoletti C., Nucleic Acids Res. 1989, 17, 2693–2704; PMC317651 2717407 Morvan F., Debart F., Vasseur J.-J., Chem. Biodiversity 2010, 7, 494–535; 20232324 Laurent A., Naval M., Debart F., Vasseur J.-J., Rayner B., Nucleic Acids Res. 1999, 27, 4151–4159; PMC148688 10518605 Szabat M., Kierzek R., FEBS J. 2017, 284, 3986–3399; 28771935 Seela F., He Y., Wei C., Tetrahedron 1999, 55, 9481–9500; Seela F., He Y., Modified Nucleosides, Synthesis and Applications, Organic and Bioorganic Chemistry, (Ed.: Loakes D.), Transworld Research Network, Kerala, India, 2002, 57–85. Morvan F., Zeidler J., Rayner B., Tetrahedron 1998, 54, 71–82. Naval M., Michel T., Vasseur J. J., Debart F., Bioorg. Med. Chem. Lett. 2002, 12, 1435–1438. 12031314 Nielsen P., Christensen N. K., Dalskov J. K., Chem. Eur. J. 2002, 8, 712–722. 11855719 Sugyama H., Saito R., Hiramatsu M. (Hamamatsu Photonics Kk, Japan), JP 07252293, 1994. Koshkin A. A., J. Org. Chem. 2004, 69, 3711–3718; 15153000 Rosenbohm C., Pedersen D. S., Frieden M., Jensen F. R., Arent S., Larsen S., Koch T., Bioorg. Med. Chem. 2004, 12, 2385–2396; 15080935 Sproat B. S., Irribarren A. M., Guimil Garcia R., Beijer B., Nucleic Acids Res. 1991, 19, 733–738; PMC333704 1708121 Pujari S. S., Leonard P., Seela F., J. Org. Chem. 2014, 79, 4423–4437; 24693949 Wu X., Delgado G., Krishnamurthy R., Eschenmoser A., Org. Lett. 2002, 4, 1283–1286; 11950343 Haaima G., Hansen H. F., Christensen L., Dahl O., Nielsen P. E., Nucleic Acids Res. 1997, 25, 4639–4643; PMC147079 9358176 Kamiya Y., Donoshita Y., Kamimoto H., Murayama K., Ariyoshi J., Asanuma H., ChemBioChem 2017, 18, 1917–1922. 28748559 Yang H., Seela F., Chem. Eur. J. 2016, 22, 13336–13346. 27492501 Canol A., Goodman M. F., Eritja R., Nucleosides Nucleotides Nucleic Acids 1994, 13, 501–509; Remaud G., Zhou X.-X., Chattopadhyaya J., Oivanen M., Lönnberg H., Tetrahedron 1987, 43, 4453–4461. 3501109 Brown T., Craig A. G., Nucleosides Nucleotides Nucleic Acids 1989, 8, 1051. Ti G. S., Gaffney B. L., Jones R. A., J. Am. Chem. Soc. 1982, 104, 1316–1319. McBride L. J., Kierzek R., Beaucage S. L., Caruthers M. H., J. Am. Chem. Soc. 1986, 108, 2040–2048. Zhao H., Leonard P., Guo X., Yang H., Seela F., Chem. Eur. J. 2017, 23, 5529–5540. 28195414 Seela F., Sirivolu V. R., He J., Eickmeier H., Acta Crystallogr. Sect. C 2005, 61, o67–o69; 15695913 Wang Z., Liu J., Zhang Y., Qi J., Han X., Zhao X., Bai D., Zhao H., Chen Q., Chem. Eur. J. 2020, 10.1002/chem.202002835. 10.1002/chem.202002835 32786015 McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M., Nucleic Acids Res. 2009, 37, 1713–1725; PMC2665218 19190094 Miyahara T., Nakatsuji H., Sugiyama H., J. Phys. Chem. A 2013, 117, 42–55. 23234566 Lankaš F., T. E. Cheetham III , Špačková N., Hobza P., Langowski J., Šponer J., Biophys. J. 2002, 82, 2592–2609; PMC1302048 11964246 Cristofalo M., Kovari D., Corti R., Salerno D., Cassina V., Dunlap D., Mantegazza F., Biophys. J. 2019, 116, 760–771; PMC6403411 30795872 Howard F. B., Chen C.-w., Cohen J. S., Miles H. T., Biochem. Biophys. Res. Commun. 1984, 118, 848–853; 6704109 Šponer J., Leszczynski J., Hobza P., J. Phys. Chem. 1996, 100, 1965–1974. Tomasz M., Das A., Tang K. S., Ford M. G. J., Minnock A., Musser S. M., Waring M. J., J. Am. Chem. Soc. 1998, 120, 11581–11593. 32700909 2021 06 23 2021 06 23 1520-6904 85 16 2020 Aug 21 The Journal of organic chemistry J Org Chem Alkynylated and Dendronized 5-Aza-7-deazaguanine Nucleosides: Cross-Coupling with Tripropargylamine and Linear Alkynes, Click Functionalization, and Fluorescence of Pyrene Adducts†. 10525 10538 10525-10538 10.1021/acs.joc.0c00926 The change of the recognition face of 5-aza-7-deazaguanine bridgehead nucleosides with respect to purine nucleosides permits the construction of new purine-purine or purine-pyrimidine base pairs in DNA and RNA. Clickable derivatives of 5-aza-7-deazaguanine were synthesized by introducing ethynyl, 1,7-octadiynyl, and tripropargylamino side chains in the 7-position of the 5-aza-7-deazapurine moiety by Sonogashira cross-coupling. Click reactions were performed with 1-azidomethylpyrene by the copper-catalyzed azide-alkyne cycloaddition. The copper(I)-catalyzed click reaction on the tripropargylamino nucleoside was significantly faster and higher yielding than that for nucleosides carrying linear alkynyl chains. Also, this reaction could be performed with copper(II) as the catalyst. An autocatalyzed cycle was suggested in which the click product acts as a catalyst. Pyrene click adducts of linear alkynylated nucleosides showed pyrene monomer emission, while tripropargylamino adducts showed monomer and excimer fluorescence. The fluorescence intensities of the 5-aza-7-deazaguanine nucleosides were higher than those of their 7-deazaguanine counterparts. The reported clickable nucleosides can be utilized to functionalize or to cross-link monomeric nucleosides or DNA for diagnostic or imaging purposes and other applications in nucleic acid chemistry and biotechnology. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Zhang Aigui A Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2020 08 10 United States J Org Chem 2985193R 0022-3263 0 Alkynes 0 Azides 0 Nucleosides 0 Oligonucleotides 0 Pyrenes 5Z93L87A1R Guanine 789U1901C5 Copper GPL8T5ZO3M 7-deazaguanine IM Alkynes Azides Click Chemistry Copper Guanine analogs & derivatives Nucleosides Oligonucleotides Pyrenes 2020 7 24 6 0 2021 6 24 6 0 2020 7 24 6 0 ppublish 32700909 10.1021/acs.joc.0c00926 32667103 2021 02 25 2024 03 30 1521-3765 26 61 2020 Nov 02 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry Heterochiral DNA with Complementary Strands with α-d and β-d Configurations: Hydrogen-Bonded and Silver-Mediated Base Pairs with Impact of 7-Deazapurines Replacing Purines. 13973 13989 13973-13989 10.1002/chem.202002765 Heterochiral DNA with hydrogen-bonded and silver-mediated base pairs have been constructed using complementary strands with nucleosides with α-d or β-d configuration. Anomeric phosphoramidites were employed to assemble the oligonucleotides. According to the Tm values and thermodynamic data, the duplex stability of the heterochiral duplexes was similar to that of homochiral DNA, but mismatch discrimination was better in heterochiral DNA. Replacement of purines by 7-deazapurines resulted in stable parallel duplexes, thereby confirming Watson-Crick-type base pairing. When cytosine was facing cytosine, thymine or adenine residues, duplex DNA formed silver-mediated base pairs in the presence of silver ions. Although the CD spectra of single strands with α-d configuration display mirror-like shapes to those with the β-d configuration, the CD spectra of the hydrogen-bonded duplexes and those with a limited number of silver pairs show a B-type double helix almost indistinguishable from natural DNA. Nonmelting silver ion-DNA complexes with entirely different CD spectra were generated when the number of silver ions was equal to the number of base pairs. © 2020 The Authors. Published by Wiley-VCH GmbH. Chai Yingying Y Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, 610041, Sichuan, P. R. China. Guo Xiurong X Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2020 09 30 Germany Chemistry 9513783 0947-6539 0 7-deazapurine 0 Purines 3M4G523W1G Silver 9007-49-2 DNA IM Base Pairing DNA chemistry Hydrogen Bonding Nucleic Acid Conformation Purines chemistry Silver DNA structures chirality nucleosides oligonucleotides silver The authors declare no conflict of interest. 2020 6 8 2020 7 14 2020 7 16 6 0 2021 2 26 6 0 2020 7 16 6 0 2020 11 30 ppublish 32667103 PMC7702046 10.1002/chem.202002765 Chargaff E., Experientia 1950, 6, 201–240. 15421335 Astbury W. T., Bell F. O., Nature 1938, 141, 747–748. Franklin R. E., Gosling R. G., Nature 1953, 171, 740–741. 13054694 Wilkins M. H. F., Gosling R. G., Seeds W. E., Nature 1951, 167, 759–760. 14833383 Watson J. D., Crick F. H. C., Nature 1953, 171, 964–967. 13063483 Blackburn G. M., Gait M. J., Loakes D., Williams D. M., Nucleic Acids in Chemistry and Biology, RSC, Cambridge, 2006; Sanger W., Principles of Nucleic Acid Structure: Springer Advanced Texts in Chemistry (Ed.: Cantor C. R.), Springer, Heidelberg, 1984. Young B. E., Kundu N., Sczepanski J. T., Chem. Eur. J. 2019, 25, 7981–7990. PMC6615976 30913332 Garbesi A., Capobianco M. L., Colonna F. P., Tondelli L., Arcamone F., Manzini G., Hilbers C. W., Aelen J. M. E., Blommers M. J. J., Nucleic Acids Res. 1993, 21, 4159–4165. PMC310044 8414968 Morvan F., Rayner B., Imbach J.-L., Chang D.-K., Lown J. W., Nucleic Acids Res. 1986, 14, 5019–5035; PMC311508 3725590 Morvan F., Rayner B., Imbach J.-L., Thenet S., Bertrand J.-R., Paoletti J., Malvy C., Paoletti C., Nucleic Acids Res. 1987, 15, 3421–3437; PMC340739 3575096 Morvan F., Rayner B., Imbach J.-L., Chang D.-K., Lown J. W., Nucleic Acids Res. 1987, 15, 4241–4255; PMC340845 3588292 Morvan F., Rayner B., Imbach J.-L., Lee M., Hartley J. A., Chang D.-K., Lown J. W., Nucleic Acids Res. 1987, 15, 7027–7044; PMC306190 3658672 Lancelot G., Guesnet J.-L., Roig V., Thuong N. T., Nucleic Acids Res. 1987, 15, 7531–7547; PMC306266 3658702 Sun J.-s., Asseline U., Rouzaud D., Montenay-Garestier T., Thuong N. T., Hélène C., Nucleic Acids Res. 1987, 15, 6149–6158. PMC306074 3627982 Séquin U., Experientia 1973, 29, 1059–1062. 4744843 Paoletti J., Bazile D., Morvan F., Imbach J.-L., Paoletti C., Nucleic Acids Res. 1989, 17, 2693–2704. PMC317651 2717407 Aramini J. M., Kalisch B. W., Pon R. T., van de Sande J. H., Germann M. W., Biochemistry 1996, 35, 9355–9365. 8755713 Debart F., Meyer A., Vasseur J.-J., Rayner B., Nucleic Acids Res. 1998, 26, 4551–4556. PMC147882 9753720 van de Sande J. H., Ramsing N. B., Germann M. W., Elhorst W., Kalisch B. W., von Kitzing E., Pon R. T., Clegg R. C., Jovin T. M., Science 1988, 241, 551–557. 3399890 Morvan F., Debart F., Vasseur J.-J., Chem. Biodiversity 2010, 7, 494–535. 20232324 Seela F., Wei C., Helv. Chim. Acta 1997, 80, 73–85; Seela F., He Y., Modified Nucleosides, Synthesis and Applications, in Organic and Bioorganic Chemistry (Ed.: Loakes D.), Transworld Research Network, Trivandrum, 2002, pp. 57–85. Lesiak K. B., Wheeler K. T., Radiat. Res. 1990, 121, 328–337. 2315449 Kaplan N. O., Ciotti M. M., Stolzenbach F. E., Bachur N. R., J. Am. Chem. Soc. 1955, 77, 815–816; Suzuki S., Suzuki K., Imai T., Suzuki N., Okuda S., J. Biol. Chem. 1965, 240, 554–556; 14253476 Bonnett R., Chem. Rev. 1963, 63, 573–605; Gassen H. G., Witzel H., Biochim. Biophys. Acta 1965, 95, 244–250; 14293699 Dinglinger F., Renz P., Hoppe-Seyler's Z. Physiol. Chem. 1971, 352, 1157–1161; 5098354 Ni G., Du Y., Tang F., Liu J., Zhao H., Chen Q., RSC Adv. 2019, 9, 14302–14320. PMC9064229 35519323 Robins M. J., Robins R. K., J. Org. Chem. 1969, 34, 2160–2163; 5788210 Fox J. J., Yung N. C., Wempen I., Hoffer M., J. Am. Chem. Soc. 1961, 83, 4066–4070; Yamaguchi T., Saneyoshi M., Chem. Pharm. Bull. 1984, 32, 1441–1450; 6467456 Ness R. K., H. G. Fletcher, Jr. , J. Am. Chem. Soc. 1960, 82, 3434–3436; Prystaš M., Farkaš J., Šorm F., Collect. Czech. Chem. Commun. 1963, 28, 3140–3143; Holý A., Collect. Czech. Chem. Commun. 1973, 38, 100–114; Robins M. J., Robins R. K., J. Am. Chem. Soc. 1965, 87, 4934–4940; 5844465 Aoyama H., Bull. Chem. Soc. Jpn. 1987, 60, 2073–2077; Janardhanam S., Nambiar K. P., J. Chem. Soc. 1994, 1009–1010; Ward D. I., Jeffs S. M., Coe P. L., Walker R. T., Tetrahedron Lett. 1993, 34, 6779–6782. Morvan F., Zeidler J., Rayner B., Tetrahedron 1998, 54, 71–82; Kurfürst R., Roig V., Chassignol M., Asseline U., Thuong N. T., Tetrahedron 1993, 49, 6975–6990; Nielsen P., Christensen N. K., Dalskov J. K., Chem. Eur. J. 2002, 8, 712–722; 11855719 Froeyen M., Lescrinier E., Kerremans L., Rosemeyer H., Seela F., Verbeure B., Lagoja I., Rozenski J., van Aerschot A., Busson R., Herdewijn P., Chem. Eur. J. 2001, 7, 5183–5194; 11775692 Marfurt J., Hunziker J., Leumann C., Bioorg. Med. Chem. Lett. 1996, 6, 3021–3024; Bates P. J., Laughton C. A., Jenkins T. C., Capaldi D. C., Roselt P. D., Reese C. B., Neidle S., Nucleic Acids Res. 1996, 24, 4176–4184; PMC146246 8932369 Naval M., Michel T., Vasseur J.-J., Debart F., Bioorg. Med. Chem. Lett. 2002, 12, 1435–1438. 12031314 Ulbricht T. L. V., Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2 (Eds.: Zorbach W. W., Tipson R. S.), Wiley Interscience, New York, 1973, pp. 177–213. Zhao H., Leonard P., Guo X., Yang H., Seela F., Chem. Eur. J. 2017, 23, 5529–5540. 28195414 Müller S. L., Zhou X., Leonard P., Korzhenko O., Daniliuc C., Seela F., Chem. Eur. J. 2019, 25, 3077–3090. 30520165 Sundaralingam M., J. Am. Chem. Soc. 1971, 93, 6644–6647. 5122780 McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 Seela F., Kehne A., Biochemistry 1985, 24, 7556–7561; Seela F., Driller H., Kehne A., Menkhoff S., Ott J., Winkeler H.-D., Synthesis in Molecular Biology (Eds.: Blöcker H., Frank R., Fritz H.-J.), VCH, Weinheim, 1987, pp. 29–41; Mizusawa S., Nishimura S., Seela F., Nucleic Acids Res. 1986, 14, 1319–1324; PMC339506 3951988 Seela F., Röling A., Nucleic Acids Res. 1992, 20, 55–61. PMC310325 1738604 Seela F., Peng X., Current Protocols in Nucleic Acid Chemistry (Eds.: Beaucage S. L., Bergstrom D. E., Glick G. D., Jones R. A.), Wiley, New York, 2005; Seela F., Budow S., Peng X., Curr. Org. Chem. 2012, 16, 161–223; Perlíková P., Hocek M., Med. Res. Rev. 2017, 37, 1429–1460. PMC5656927 28834581 Sun J.-S., François J.-C., Lavery R., Saison-Behmoaras T., Montenay-Garestier T., Thuong N. T., Hélène C., Biochemistry 1988, 27, 6039–6045. 2461219 Torigoe H., Ono A., Takamori A., Nucleic Acids Symp. Series 2004, 48, 101–102. 17150498 Kondo J., Tada Y., Dairaku T., Saneyoshi H., Okamoto I., Tanaka Y., Ono A., Angew. Chem. Int. Ed. 2015, 54, 13323–13326; 26448329 Angew. Chem. 2015, 127, 13521–13524. Jana S. K., Guo X., Mei H., Seela F., Chem. Commun. 2015, 51, 17301–17304; 26463426 Mei H., Röhl I., Seela F., J. Org. Chem. 2013, 78, 9457–9463. 23965151 Santamaría-Díaz N., Méndez-Arriaga J. M., Salas J. M., Galindo M. A., Angew. Chem. Int. Ed. 2016, 55, 6170–6174; 27005864 Angew. Chem. 2016, 128, 6278–6282; Méndez-Arriaga J. M., Maldonado C. R., Dobado J. A., Galindo M. A., Chem. Eur. J. 2018, 24, 4583–4589. 29226453 Kondo J., Tada Y., Dairaku T., Hattori Y., Saneyoshi H., Ono A., Tanaka Y., Nat. Chem. 2017, 9, 956–960. 28937663 Guo X., Seela F., Chem. Eur. J. 2017, 23, 11776–11779; 28682466 Chai Y., Leonard P., Guo X., Seela F., Chem. Eur. J. 2019, 25, 16639–16651. PMC6972701 31583755 Urata H., Yamaguchi E., Nakamura Y., Wada S.-i., Chem. Commun. 2011, 47, 941–943. 21076774 Yang H., Seela F., Chem. Eur. J. 2016, 22, 13336–13346. 27492501 Funai T., Nakamura J., Miyazaki Y., Kiriu R., Nakagawa O., Wada S.-i., Ono A., Urata H., Angew. Chem. Int. Ed. 2014, 53, 6624–6627; 24719384 Angew. Chem. 2014, 126, 6742–6745. Takezawa Y., Müller J., Shionoya M., Chem. Lett. 2017, 46, 622–633; Sinha I., Fonseca Guerra C., Müller J., Angew. Chem. Int. Ed. 2015, 54, 3603–3606; 25631645 Angew. Chem. 2015, 127, 3674–3677. Swasey S. M., Espinosa Leal L., Lopez-Acevedo O., Pavlovich J., Gwinn E. G., Sci Rep. 2015, 5, 10163–10171. PMC4431418 25973536 Liu H., Shen F., Haruehanroengra P., Yao Q., Cheng Y., Chen Y., Yang C., Zhang J., Wu B., Luo Q., Cui R., Li J., Ma J., Sheng J., Gan J., Angew. Chem. Int. Ed. 2017, 56, 9430–9434; 28635152 Angew. Chem. 2017, 129, 9558–9562. Bloomfield V. A., Crothers D. M., I. Tinoco, Jr. , Physical Chemistry of Nucleic Acids (Ed.: Wernick L.), Harper & Row, New York, 1974. Schmidbaur H., Schier A., Angew. Chem. Int. Ed. 2015, 54, 746–784; 25393553 Angew. Chem. 2015, 127, 756–797. Szabat M., Kierzek R., FEBS J. 2017, 284, 3986–3998. 28771935 Seela F., Driller H., Nucleic Acids Res. 1989, 17, 901–910. PMC331711 2922275 32367834 2020 08 04 2024 07 29 2053-2296 76 Pt 5 2020 May 01 Acta crystallographica. Section C, Structural chemistry Acta Crystallogr C Struct Chem 7-Iodo-5-aza-7-deazaguanine ribonucleoside: crystal structure, physical properties, base-pair stability and functionalization. 513 523 513-523 10.1107/S2053229620004684 The positional change of nitrogen-7 of the RNA constituent guanosine to the bridgehead position-5 leads to the base-modified nucleoside 5-aza-7-deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson-Crick proton donor site N3-H becomes a proton-acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all-purine' DNA and DNA with silver-mediated base pairs. The present work reports the single-crystal X-ray structure of 7-iodo-5-aza-7-deazaguanosine, C10 H12 IN5 O5 (1). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4'-endo) for the ribose moiety, with an antiperiplanar orientation of the 5'-hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7-iodo substituent forms a contact to oxygen-2' of the ribose moiety. Self-pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O-H...O and N-H...O). The concept of pK-value differences to evaluate base-pair stability was applied to purine-purine base pairing and stable base pairs were predicted for the construction of `all-purine' RNA. Furthermore, the 7-iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy. open access. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Budow-Busse Simone S Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. Daniliuc Constantin C Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany. Seela Frank F Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany. eng Journal Article Research Support, Non-U.S. Gov't 2020 04 29 England Acta Crystallogr C Struct Chem 101620313 2053-2296 0 7-iodo-7-deazaguanosine 0 Nucleic Acids 0 Purines 0 Ribonucleosides 12133JR80S Guanosine 3M4G523W1G Silver 9007-49-2 DNA W60KTZ3IZY purine IM Base Pairing Crystallography, X-Ray DNA chemistry Guanosine analogs & derivatives chemistry Molecular Conformation Nucleic Acids chemistry Purines chemistry Ribonucleosides chemistry Silver chemistry 7-iodo-5-aza-7-deazaguanosine Hirshfeld surface analysis all-purine RNA base-pair prediction crystal packing crystal structure pKa values ribonucleoside 2020 2 19 2020 4 3 2020 5 6 6 0 2020 5 6 6 0 2020 8 5 6 0 2020 4 29 ppublish 32367834 PMC7199197 10.1107/S2053229620004684 S2053229620004684 Agrofoglio, L. A., Gillaizeau, I. & Saito, Y. (2003). Chem. Rev. 103, 1875–1916. 12744695 Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. 5079964 Blackburn, G. M., Gait, M. J., Loakes, D. & Williams, D. M. (2006). Editors. Nucleic Acids in Chemistry and Biology, 3rd ed. Cambridge: RSC Publishing. Bruker (1998). XP. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Greco, N. J. & Tor, Y. (2007). Tetrahedron, 63, 3515–3527. PMC1868554 18431439 Guo, X., Leonard, P., Ingale, S. A., Liu, J., Mei, H., Sieg, M. & Seela, F. (2018). Chem. Eur. J. 24, 8883–8892. 29573347 Hoshika, S., Singh, I., Switzer, C., Molt, R. W. Jr, Leal, N. A., Kim, M.-J., Kim, M.-S., Kim, H.-J., Georgiadis, M. M. & Benner, S. A. (2018). J. Am. Chem. Soc. 140, 11655–11660. 30148365 IUPAC–IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9–15. 6832147 Kojić-Prodić, B., Ružić-Toroš, Ž., Golič, L., Brdar, B. & Kobe, J. (1982). Biochim. Biophys. Acta, 698, 105–110. 7126582 Krishnamurthy, R. (2012). Acc. Chem. Res. 45, 2035–2044. PMC3525050 22533519 Laos, R., Lampropoulos, C. & Benner, S. A. (2019). Acta Cryst. C75, 22–28. 30601127 Leonard, P. (2020). Personal communication. Leonard, P., Kondhare, D., Jentgens, X., Daniliuc, C. & Seela, F. (2019). J. Org. Chem. 84, 13313–13328. 31584277 Lin, W., Zhang, X. & Seela, F. (2004). Helv. Chim. Acta, 87, 2235–2244. Manna, S., Sarkar, D. & Srivatsan, S. G. (2018). J. Am. Chem. Soc. 140, 12622–12633. PMC6348103 30192541 Müller, S. L., Zhou, X., Leonard, P., Korzhenko, O., Daniliuc, C. & Seela, F. (2019). Chem. Eur. J. 25, 3077–3090. 30520165 Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. PMC3661305 23719469 Ramzaeva, N. & Seela, F. (1996). Helv. Chim. Acta, 79, 1549–1558. Rosemeyer, H. & Seela, F. (1987). J. Org. Chem. 52, 5136–5143. Saenger, W. (1984). In Principles of Nucleic Acid Structure, edited by C. R. Cantor. New York: Springer-Verlag. Seela, F., Amberg, S., Melenewski, A. & Rosemeyer, H. (2001). Helv. Chim. Acta, 84, 1996–2014. Seela, F. & Melenewski, A. (1999). Eur. J. Org. Chem. 1999, 485–496. Seela, F., Melenewski, A. & Wei, C. (1997). Bioorg. Med. Chem. Lett. 7, 2173–2176. Seela, F., Ramzaeva, N. & Rosemeyer, H. (2003). Science of Synthesis, Vol. 16, edited by Y. Yamamoto, pp. 945–1108. Stuttgart: Georg Thieme Verlag. Seela, F. & Rosemeyer, H. (2002). Recent Advances in Nucleosides: Chemistry and Chemotherapy, edited by C. K. Chu, pp. 505–533. Amsterdam: Elsevier. Seela, F., Rosemeyer, H., Melenewski, A., Heithoff, E.-M., Eickmeier, H. & Reuter, H. (2002). Acta Cryst. C58, o142–o144. 11870307 Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. 0 Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. 0 Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Tanpure, A. A. & Srivatsan, S. G. (2018). ChemBioChem, 13, 2392–2399. 23070860 Tokugawa, M., Masaki, Y., Canggadibrata, J. C., Kaneko, K., Shiozawa, T., Kanamori, T., Grøtli, M., Wilhelmsson, L. M., Sekine, M. & Seio, K. (2016). Chem. Commun. 52, 3809–3812. 26865112 Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net. Van Wijk, L., Haasnoot, C. A. G., de Leeuw, F. A. A. M., Huckriede, B. D., Westra Hoekzema, A. J. A. & Altona, C. (1999). PSEUROT6.3. Leiden Institute of Chemistry, Leiden University, The Netherlands. Wächtershäuser, G. (1988). Proc. Natl Acad. Sci. USA, 85, 1134–1135. PMC279720 3422484 Watson, J. D. & Crick, F. H. (1953). Nature, 171, 737–738. 13054692 Winnacker, M. & Kool, E. T. (2013). Angew. Chem. Int. Ed. 52, 12498–12508. PMC5497059 24249550 31584277 2020 05 19 2020 05 19 1520-6904 84 21 2019 Nov 01 The Journal of organic chemistry J Org Chem Nucleobase-Functionalized 5-Aza-7-deazaguanine Ribo- and 2'-Deoxyribonucleosides: Glycosylation, Pd-Assisted Cross-Coupling, and Photophysical Properties. 13313 13328 13313-13328 10.1021/acs.joc.9b01347 The special nucleobase recognition pattern of 5-aza-7-deazaguanine nucleosides makes them valuable for construction of homo purine DNA, silver-mediated base pairs, and expansion of the four letter genetic coding system. To widen the utility of 5-aza-7-deazaguanine nucleosides, side chains were introduced at position-7 of the nucleobase. As key compounds, 7-iodo nucleosides were synthesized. Nucleobase anion glycosylation of the iodo derivative of isobutyrylated 5-aza-7-deazaguanine with the bromo sugar of 2,3,5-tri-O -benzoyl-1-O -acetyl-d-ribofuranose gave the pure β-D anomeric N-9 glycosylation product (67%), whereas one-pot Vorbrüggen conditions gave only 42% of the iodinated nucleoside. The noniodinated nucleoside was formed in 84%. For the synthesis of 2'-deoxyribonucleosides, anion glycosylation performed with Hoffer's 2'-deoxyhalogenose yielded an anomeric mixture (α-D = 33% and β-D = 39%) of 2'-deoxyribonucleosides. Various side chain derivatives were prepared from nonprotected nucleosides by Pd-assisted Sonogashira or Suzuki-Miyaura cross-coupling. Among the functionalized ribonucleosides and anomeric 2'-deoxyribonucleosides, some of them showed strong fluorescence. Benzofuran and pyrene derivatives display high quantum yields in non-aqueous solvents and solvatochromism. Single-crystal X-ray analysis of 7-iodo-5-aza-7-deaza-2'-deoxyguanosine displayed intermolecular iodo-oxygen interactions in the crystal and channels filled with solvent molecules. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology , Center for Nanotechnology , Heisenbergstrasse 11 , 48149 Münster , Germany. Kondhare Dasharath D Laboratory of Bioorganic Chemistry and Chemical Biology , Center for Nanotechnology , Heisenbergstrasse 11 , 48149 Münster , Germany. Jentgens Xenia X Laboratory of Bioorganic Chemistry and Chemical Biology , Center for Nanotechnology , Heisenbergstrasse 11 , 48149 Münster , Germany. Daniliuc Constantin C Institut für Organische Chemie , Universität Münster , Corrensstrasse 40 , 48149 Münster , Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology , Center for Nanotechnology , Heisenbergstrasse 11 , 48149 Münster , Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien , Universität Osnabrück , Barbarastrasse 7 , 49069 Osnabrück , Germany. eng Journal Article Research Support, Non-U.S. Gov't 2019 10 23 United States J Org Chem 2985193R 0022-3263 IM 2019 10 5 6 0 2019 10 5 6 1 2019 10 5 6 0 ppublish 31584277 10.1021/acs.joc.9b01347 31583755 2024 03 28 1521-3765 25 72 2019 Dec 20 Chemistry (Weinheim an der Bergstrasse, Germany) Chemistry Silver-Mediated Homochiral and Heterochiral α-dC/β-dC Base Pairs: Synthesis of α-dC through Glycosylation and Impact of Consecutive, Isolated, and Multiple Metal Ion Pairs on DNA Stability. 16639 16651 16639-16651 10.1002/chem.201903915 Isolated and consecutive heterochiral α-dC- base pairs have been incorporated into 12-mer oligonucleotide duplexes at various positions, thereby replacing Watson-Crick pairs. To this end, a new synthesis of the α-d anomer of dC has been developed, and oligonucleotides containing α-dC residues have been synthesized. Silver-mediated base pairs were formed upon the addition of silver ions. Furthermore, we have established that heterochiral α-dC-dC base pairs can approach the stability of a Watson-Crick pair, whereas homochiral dC-dC pairs are significantly less stable. A positional change of the silver-mediated base pairs affects the duplex stability and reveals the nearest-neighbor influence. When the number of silver ions was equivalent to the number of duplex base pairs (12), non-melting silver-rich complexes were formed. Structural changes have been supported by circular dichroism (CD) spectra, which showed that the B-DNA structure was maintained whilst the silver ion concentration was low. At high silver ion concentration, silver-rich complexes displaying different CD spectra were formed. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. Chai Yingying Y Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, P. R. China. Leonard Peter P Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Guo Xiurong X Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Seela Frank F 0000-0002-4810-4840 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany. Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany. eng Journal Article 2019 11 28 Germany Chemistry 9513783 0947-6539 IM DNA base pairing circular dichroism nucleobases silver The authors declare no conflict of interest. 2019 10 2 2019 8 27 2019 10 5 6 0 2019 10 5 6 1 2019 10 5 6 0 2020 1 21 ppublish 31583755 PMC6972701 10.1002/chem.201903915 Ono A., Torigoe H., Tanaka Y., Okamoto I., Chem. Soc. Rev. 2011, 40, 5855–5866; 21826352 Shamsi M. H., Kraatz H.-B., J. Inorg. Organomet. Polym. 2013, 23, 4–23; Scharf P., Müller J., ChemPlusChem 2013, 78, 20–34; Takezawa Y., Müller J., Shionoya M., Chem. Lett. 2017, 46, 622–633; Takezawa Y., Shionoya M., Acc. Chem. Res. 2012, 45, 2066–2076; 22452649 Clever G. H., Kaul C., Carell T., Angew. Chem. Int. Ed. 2007, 46, 6226–6236; 17640011 Angew. Chem. 2007, 119, 6340–6350; Ma D.-L., He H.-Z., Chan D. S.-H., Leung C.-H., Chem. Sci. 2013, 4, 3366–3380; Tanaka Y., Kondo J., Sychrovský V., Šebera J., Dairaku T., Saneyoshi H., Urata H., Torigoe H., Ono A., Chem. Commun. 2015, 51, 17343–17360. 26466090 Yamane T., Davidson N., Biochim. Biophys. Acta 1962, 55, 609–621; 14008892 Daune M., Dekker C. A., Schachman H. K., Biopolymers 1966, 4, 51–76; Izatt R. M., Christensen J. J., Rytting J. H., Chem. Rev. 1971, 71, 439–481; 5126179 Eichhorn G. L., Butzow J. J., Clark P., Tarien E., Biopolymers 1967, 5, 283–296; 6040034 Jensen R. H., Davidson N., Biopolymers 1966, 4, 17–32; Bloomfield V. A., Crothers D. M., I. Tinoco, Jr. , in Physical Chemistry of Nucleic Acids (Ed.: L. Wernick), Harper & Row, Publishers, Inc., New York, 1974, pp. 420–429. Torigoe H., Ono A., Takamori A., Nucleic Acids Symp. Ser. 2004, 48, 101–102; 17150498 Ono A., Cao S., Togashi H., Tashiro M., Fujimoto T., Machinami T., Oda S., Miyake Y., Okamoto I., Tanaka Y., Chem. Commun. 2008, 4825–4827. 18830506 Kondo J., Tada Y., Dairaku T., Saneyoshi H., Okamoto I., Tanaka Y., Ono A., Angew. Chem. Int. Ed. 2015, 54, 13323–13326; 26448329 Angew. Chem. 2015, 127, 13521–13524. Jana S. K., Guo X., Mei H., Seela F., Chem. Commun. 2015, 51, 17301–17304; 26463426 Mei H., Ingale S. A., Seela F., Chem. Eur. J. 2014, 20, 16248–16257; 25336305 Yang H., Mei H., Seela F., Chem. Eur. J. 2015, 21, 10207–10219; 26096946 Mei H., Röhl I., Seela F., J. Org. Chem. 2013, 78, 9457–9463. 23965151 Kondo J., Tada Y., Dairaku T., Hattori Y., Saneyoshi H., Ono A., Tanaka Y., Nat. Chem. 2017, 9, 956–960; 28937663 Liu H., Shen F., Haruehanroengra P., Yao Q., Cheng Y., Chen Y., Yang C., Zhang J., Wu B., Luo Q., Cui R., Li J., Ma J., Sheng J., Gan J., Angew. Chem. Int. Ed. 2017, 56, 9430–9434; 28635152 Angew. Chem. 2017, 129, 9558–9562. Santamaría-Díaz N., Méndez-Arriaga J. M., Salas J. M., Galindo M. A., Angew. Chem. Int. Ed. 2016, 55, 6170–6174; 27005864 Angew. Chem. 2016, 128, 6278–6282; Méndez-Arriaga J. M., Maldonado C. R., Dobado J. A., Galindo M. A., Chem. Eur. J. 2018, 24, 4583–4589. 29226453 Zimmermann N., Meggers E., Schultz P. G., J. Am. Chem. Soc. 2002, 124, 13684–13685; 12431092 Lippert B., Sanz Miguel P. J., Acc. Chem. Res. 2016, 49, 1537–1545; 27472006 Naskar S., Guha R., Müller J., Angew. Chem. 2019, 131, 58; Zhao H., Leonard P., Guo X., Yang H., Seela F., Chem. Eur. J. 2017, 23, 5529–5540; 28195414 Guo X., Leonard P., Ingale S. A., Seela F., Chem. Eur. J. 2017, 23, 17740–17754; 28906062 Taherpour S., Golubev O., Lönnberg T., J. Org. Chem. 2014, 79, 8990–8999; 25211050 Swasey S. M., Leal L. E., Lopez-Acevedo O., Pavlovich J., Gwinn E. G., Sci. Rep. 2015, 5, 10163–10171; PMC4431418 25973536 Urata H., Yamaguchi E., Nakamura Y., Wada S.-i., Chem. Commun. 2011, 47, 941–943; 21076774 Megger D. A., Guerra C. F., Bickelhaupt F. M., Müller J., J. Inorg. Biochem. 2011, 105, 1398–1404; 21955841 Zhou X., Kondhare D., Leonard P., Seela F., Chem. Eur. J. 2019, 25, 10408–10419. 31062885 Guo X., Seela F., Chem. Eur. J. 2017, 23, 11776–11779. 28682466 Müller S. L., Zhou X., Leonard P., Korzhenko O., Daniliuc C., Seela F., Chem. Eur. J. 2019, 25, 3077–3090. 30520165 Hoffer M., Chem. Ber. 1960, 93, 2777–2781. Fox J. J., Yung N. C., Wempen I., Hoffer M., J. Am. Chem. Soc. 1961, 83, 4066–4070. Holý A., Collect. Czech. Chem. Commun. 1973, 38, 100–114; Sawai H., Nakamura A., Hayashi H., Shinozuka K., Nucleosides Nucleotides 1994, 13, 1647–1654; Shannahoff D. H., Sanchez R. A., J. Org. Chem. 1973, 38, 593–598. 4687215 Yamaguchi T., Saneyoshi M., Chem. Pharm. Bull. 1984, 32, 1441–1450. 6467456 Shinozuka K., Yamada N., Nakamura A., Ozaki H., Sawai H., Bioorg. Med. Chem. Lett. 1996, 6, 1843–1848; Wang Z., Prudhomme D. R., Buck J. R., Park M., Rizzo C. J., J. Org. Chem. 2000, 65, 5969–5985; 10987930 Morvan F., Zeidler J., Rayner B., Tetrahedron 1998, 54, 71–82; Prystaš M., Farkaš J., Šorm F., Collect. Czech. Chem. Commun. 1965, 30, 3123–3133; Kurfürst R., Roig V., Chassignol M., Asseline U., Thuong N. T., Tetrahedron 1993, 49, 6975–6990. Aoyama H., Bull. Chem. Soc. Jpn. 1987, 60, 2073–2077. Ward D. I., Coe P. L., Walker R. T., Collect. Czech. Chem. Commun. 1993, 58, 1–4. Morvan F., Rayner B., Leonetti J.-P., Imbach J.-L., Nucleic Acids Res. 1988, 16, 833–847. PMC334722 3344220 McDowell J. A., Turner D. H., Biochemistry 1996, 35, 14077–14089. 8916893 Guo X., Leonard P., Ingale S. A., Liu J., Mei H., Sieg M., Seela F., Chem. Eur. J. 2018, 24, 8883–8892. 29573347 Morvan F., Rayner B., Imbach J.-L., Chang D.-K., Lown J. W., Nucleic Acids Res. 1986, 14, 5019–5035. PMC311508 3725590 trying2...
Publications by Frank Seela | LitMetric
Publications by authors named "Frank Seela"
Self-assembly of α-D nucleosides to supramolecular hydrogels is described in detail. Hydrogel formation was studied on α-D 2'-deoxyguanosine (α-dG), and the fluorescent 8-azapurine α-D nucleosides 2-amino-8-aza-2'-deoxyadenosine (α-2-NH2-z8Ad) and 8-aza-2'-deoxyisoguanosine (α-z8iGd). These compounds were prepared from α-D 8-aza-2'-deoxyguanosine by an activation/amination protocol followed by deamination.
View Article and Find Full Text PDF
Bioconjug Chem
August 2024
7-Deaza-2'-deoxyisoguanosine forms stable inverse Watson-Crick base pairs with 5-methyl-2'-deoxyisocytidine and purine-purine base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine. Both base pairs expand the genetic coding system. The manuscript reports on the functionalization of these base pairs with halogen atoms and clickable side chains introduced at 7-position of the 7-deazapurine base.
View Article and Find Full Text PDF
Article Synopsis
The manuscript discusses the synthesis of 7-deazapurine and pyrimidine nucleoside cycloadducts created through the inverse electron demand Diels-Alder (iEDDA) reaction with a specific 3,6-di(pyrid-2-yl)-1,2,4,5-tetrazine compound. Experimental findings show that the addition of spacer units between nucleobases and pyridazine cycloadducts enhances the stability of DNA duplexes, while direct connections diminish stability. The study also highlights the significance of oxidation in reactions involving alkenyl compounds and the impact of synthesized oligonucleotides on mismatch formation, indicating that linkers can help reduce errors in certain interactions with
View Article and Find Full Text PDF
Acta Crystallogr C Struct Chem
February 2024
α-D-2'-Deoxyribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited.
View Article and Find Full Text PDF
The functionalization in position-7 of 7-deazaisoguanine and 7-deazapurin-2,6-diamine ribo- and 2'-deoxyribonucleosides by halogen atoms (chloro, bromo, iodo), and clickable alkynyl and vinyl side chains for copper-catalyzed and copper-free cycloadditions is described. Problems arising during the synthesis of the 7-iodinated isoguanine ribo- and 2'-deoxyribonucleosides were solved by the action of acetone. The impact of side chains and halogen atoms on the p values and hydrophobicity of nucleosides was investigated.
View Article and Find Full Text PDF
J Org Chem
September 2023
Purine DNA represents an alternative pairing system formed by two purines in the base pair with the recognition elements of Watson-Crick DNA. Base functionalization of 7-deaza-2'-deoxyxanthosine with ethynyl and octadiynyl residues led to clickable side chain derivatives with short and long linker arms. As complementary bases, purine-2,6-diamine or 7-deazapurine-2,6-diamine 2'-deoxyribonucleosides were used.
View Article and Find Full Text PDF
The recognition of Watson-Crick base pairs carrying nucleobase protecting groups is reported as a new approach for DNA functionalization. The 2-amino groups of purine- and 7-deazapurine-2,6-diamine 2'-deoxyribonucleosides served as molecular targets for this functionalization. The 2-amino group withstands oligonucleotide deprotection with ammonia, whereas all other protecting groups are released after chemical DNA synthesis.
View Article and Find Full Text PDF
Bioconjug Chem
February 2023
The isoguanine-isocytosine base pair (isoG-isoC) represents an important expansion of the DNA coding system. The base pair is more stable than the canonical adenine-thymine or guanine-cytosine pairs. However, nothing is known on the functionalization of the noncanonical isoG-isoC pair at the isoguanine site.
View Article and Find Full Text PDF
Purine-2,6-diamine and 8-aza-7-deaza-7-bromopurine-2,6-diamine 2'-deoxyribonucleosides (1 and 2) were implemented in isothermal DNA strand displacement reactions. Nucleoside 1 is a weak stabilizer of dA-dT base pairs, nucleoside 2 evokes strong stabilization. Strand displacement reactions used single-stranded invaders with single and multiple incorporations of stabilizers.
View Article and Find Full Text PDF
Bioconjug Chem
October 2022
Anomeric purine-purine DNA represents a new recognition system with strands in parallel orientation. This work investigates the new heterochiral system and the positional impact of nucleobase functionalization. Tracts of anomeric isoguanine/8-aza-7-deazaisoguanine base pairs with 5-aza-7-deazaguanine were embedded in anomeric Watson-Crick DNA.
View Article and Find Full Text PDF
Purine-purine base pairs represent an alternative recognition system to the purine-pyrimidine pairing reported by Watson and Crick. Modified purines are the source for non-canonical interactions. To mimic dG-dC interactions, 2'-deoxyisoguanosine () and 8-aza-7-deaza-2'-deoxyisoguanosine () are used to construct base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine (dZ).
View Article and Find Full Text PDF
Acta Crystallogr C Struct Chem
July 2022
Article Synopsis
The compound 3-phenyltetrahydropyrimido[4,5-c]pyridazine 2'-deoxyribonucleoside exists in two distinct conformations in its crystalline state, each with different sugar pucker configurations. Conformers 1a and 1b both maintain similar anti conformations around their N-glycosylic bonds and are stabilized by intermolecular hydrogen bonds, with Hirshfeld surface analysis confirming their bonding patterns. The nucleoside effectively pairs with dA, showing stability comparable to the canonical dA-dT pair, and its duplex stability is further enhanced by interactions with a dA analogue.
View Article and Find Full Text PDF
DNA strand displacement is a technique to exchange one strand of a double stranded DNA by another strand (invader). It is an isothermal, enzyme free method driven by single stranded overhangs (toeholds) and is employed in DNA amplification, mismatch detection and nanotechnology. We discovered that anomeric (α/β) DNA can be used for heterochiral strand displacement.
View Article and Find Full Text PDF
Acta Crystallogr C Struct Chem
March 2022
8-Furylimidazolo-2'-deoxycytidine (ImidC), CHNO, is a fluorescent analogue of 2'-deoxycytidine, also displaying the same recognition face. As a constituent of DNA, ImidC forms extraordinarily strong silver-mediated self-pairs. Crystal structure determination revealed that ImidC adopts two types of disordered residues: the sugar unit and the furyl moiety.
View Article and Find Full Text PDF
Anomeric base pairs in heterochiral DNA with strands in the α-d and β-d configurations and homochiral DNA with both strands in α-d configuration were functionalized. The α-d anomers of 2'-deoxyuridine and 7-deaza-2'-deoxyadenosine were synthesized and functionalized with clickable octadiynyl side chains. Nucleosides were protected and converted to phosphoramidites.
View Article and Find Full Text PDF
7-Functionalized 8-aza-7-deaza-2'-deoxyisoguanine and 8-aza-7-deaza-2-aminoadenine 2'-deoxyribonucleosides decorated with fluorescent pyrene or benzofuran sensor tags or clickable side chains with terminal triple bonds were synthesized. 8-Aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine was used as the central intermediate and was accessible by an improved two-step glycosylation/amination protocol. Functionalization of position-7 was performed either on 8-aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine followed by selective deamination of the 2-amino group or on 7-iodinated 8-aza-7-deaza-2'-deoxyisoguanosine.
View Article and Find Full Text PDF
Dodecamer duplex DNA containing anomeric (α/β-d) and enantiomeric (β-l/β-d) 2'-deoxycytidine mismatches was studied with respect to base pair stability in the absence and presence of silver ions. Stable duplexes with silver-mediated cytosine-cytosine pairs were formed by all anomeric and enantiomeric combinations. Stability changes were observed depending on the composition of the mismatches.
View Article and Find Full Text PDF
Acta Crystallogr C Struct Chem
May 2021
β-2'-Deoxyribonucleosides are the constituents of nucleic acids, whereas their anomeric α-analogues are rarely found in nature. Moreover, not much information is available on the structural and conformational parameters of α-2'-deoxyribonucleosides. This study reports on the single-crystal X-ray structure of α-2'-deoxycytidine, CHNO (1), and the conformational parameters characterizing 1 were determined.
View Article and Find Full Text PDF
The Watson-Crick coding system depends on the molecular recognition of complementary purine and pyrimidine bases. Now, the construction of hybrid DNAs with Watson-Crick and purine-purine base pairs decorated with dendritic side chains was performed. Oligonucleotides with single and multiple incorporations of 5-aza-7-deaza-2'-deoxyguanosine, its tripropargylamine derivative, and 2'-deoxyisoguanosine were synthesized.
View Article and Find Full Text PDF
Article Synopsis
Stabilization of DNA is important for various applications, including gene therapy, diagnostics, and materials science, and this study focuses on heterochiral DNA with distinct strand configurations. Researchers created 12-mer heterochiral duplexes using specially designed oligonucleotides and tested two types of nucleosides that can enhance the stability of base pairs, finding that one compound is particularly effective. The study utilized UV melting profiles to measure the stability, along with circular dichroism (CD) spectra to observe structural changes in the DNA during melting, revealing insights into DNA stabilization techniques.
View Article and Find Full Text PDF
The change of the recognition face of 5-aza-7-deazaguanine bridgehead nucleosides with respect to purine nucleosides permits the construction of new purine-purine or purine-pyrimidine base pairs in DNA and RNA. Clickable derivatives of 5-aza-7-deazaguanine were synthesized by introducing ethynyl, 1,7-octadiynyl, and tripropargylamino side chains in the 7-position of the 5-aza-7-deazapurine moiety by cross-coupling. Click reactions were performed with 1-azidomethylpyrene by the copper-catalyzed azide-alkyne cycloaddition.
View Article and Find Full Text PDF
Heterochiral DNA with hydrogen-bonded and silver-mediated base pairs have been constructed using complementary strands with nucleosides with α-d or β-d configuration. Anomeric phosphoramidites were employed to assemble the oligonucleotides. According to the T values and thermodynamic data, the duplex stability of the heterochiral duplexes was similar to that of homochiral DNA, but mismatch discrimination was better in heterochiral DNA.
View Article and Find Full Text PDF
Acta Crystallogr C Struct Chem
May 2020
The positional change of nitrogen-7 of the RNA constituent guanosine to the bridgehead position-5 leads to the base-modified nucleoside 5-aza-7-deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson-Crick proton donor site N3-H becomes a proton-acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all-purine' DNA and DNA with silver-mediated base pairs.
View Article and Find Full Text PDF
The special nucleobase recognition pattern of 5-aza-7-deazaguanine nucleosides makes them valuable for construction of homo purine DNA, silver-mediated base pairs, and expansion of the four letter genetic coding system. To widen the utility of 5-aza-7-deazaguanine nucleosides, side chains were introduced at position-7 of the nucleobase. As key compounds, 7-iodo nucleosides were synthesized.
View Article and Find Full Text PDF
Isolated and consecutive heterochiral α-dC- base pairs have been incorporated into 12-mer oligonucleotide duplexes at various positions, thereby replacing Watson-Crick pairs. To this end, a new synthesis of the α-d anomer of dC has been developed, and oligonucleotides containing α-dC residues have been synthesized. Silver-mediated base pairs were formed upon the addition of silver ions.
View Article and Find Full Text PDF