Publications by authors named "Frank Schoofs"

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior.

View Article and Find Full Text PDF

The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond.

View Article and Find Full Text PDF

The potential of a manganite ferromagnetic insulator in the field of spin-filtering has been demonstrated. For this, an ultrathin film of Sm0.75Sr0.

View Article and Find Full Text PDF

Inspired by biological neural systems, neuromorphic devices may open up new computing paradigms to explore cognition, learning and limits of parallel computation. Here we report the demonstration of a synaptic transistor with SmNiO₃, a correlated electron system with insulator-metal transition temperature at 130°C in bulk form. Non-volatile resistance and synaptic multilevel analogue states are demonstrated by control over composition in ionic liquid-gated devices on silicon platforms.

View Article and Find Full Text PDF

In order to study the fundamental conduction mechanism of LaAlO3/SrTiO3 (LAO/STO) interfaces, heterostructures were modified with a single unit cell interface layer of either an isovalent titanate ATiO3 (A = Ca, Sr, Sn, Ba) or a rare earth modified Sr0.5RE0.5TiO3 (RE = La, Nd, Sm, Dy) between the LAO and the STO.

View Article and Find Full Text PDF